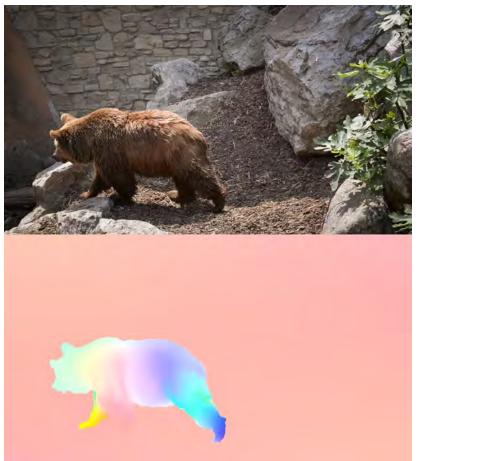
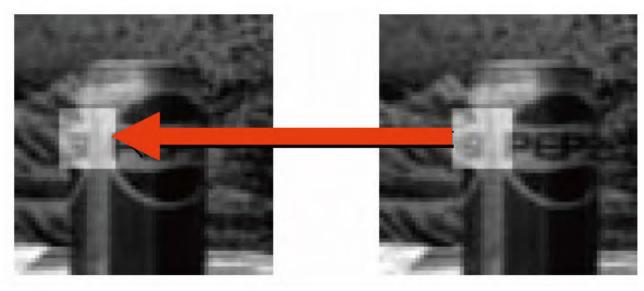
Optical Flow

• Definition: optical flow is the *apparent* motion of *brightness patterns* in the image



Color wheel

Key Assumptions: brightness Constancy



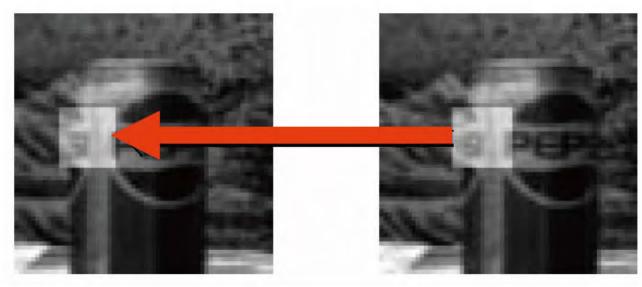
Stanford University

Lecture 17 -12

Credit: Juan Carlos Niebles and Ranjay Krishna @ Stanford Vision and Learning Lab

* Slide from Michael Black, CS143 2003

Key Assumptions: brightness Constancy



Assumption

Image measurements (e.g. brightness) in a small region remain the same although their location may change.

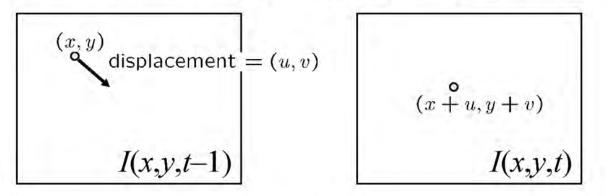
$$I(x+u, y+v, t+1) = I(x, y, t)$$

(assumption)

Lecture 17 -12

Slide from Michael Black, CS143 200

The brightness constancy constraint



Brightness Constancy Equation:

SGVR Lab

ΚΔΙΣΤ

Stanford University

$$I(x, y, t-1) = I(x + u(x, y), y + v(x, y), t)$$

Linearizing the right side using Taylor expansion:

$$I(x+u, y+v, t) \approx I(x, y, t-1) + \begin{bmatrix} I_x & u(x, y) + I_y & v(x, y) + I_t \\ I(x+u, y+v, t) - I(x, y, t-1) = I_x & u(x, y) + I_y & v(x, y) + I_t \\ \text{Hence, } I_x \cdot u + I_y \cdot v + I_t \approx 0 \quad \Rightarrow \nabla I \cdot \begin{bmatrix} u & v \end{bmatrix}^T + I_t = 0$$

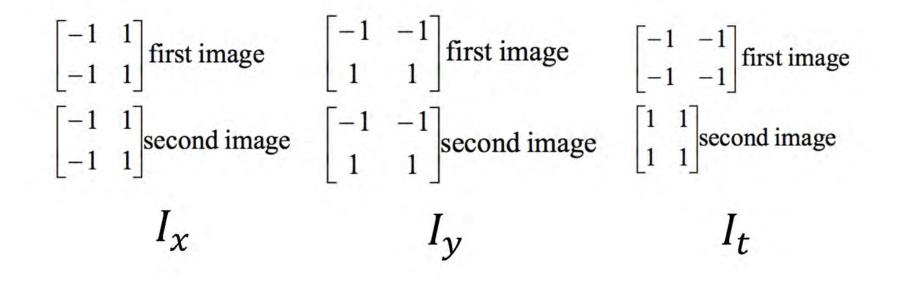
Lecture 17 -13

4

28-Nov-17

Source: Silvio Savarese

Filters used to find the derivatives



Stanford University

Lecture 17 -14

The brightness constancy constraint

Can we use this equation to recover image motion (u,v) at each pixel?

$$\nabla I \cdot \left[u \ v \right]^T + I_t = 0$$

How many equations and unknowns per pixel?
 One equation (this is a scalar equation!), two unknowns (u,v)

The component of the flow perpendicular to the gradient (i.e., parallel to the edge) cannot be measured gradient

If (u, v) satisfies the equation, so does (u+u', v+v') if $\nabla I \cdot [u' v']^T = 0$ (u',v') (u+u',v+v')edge

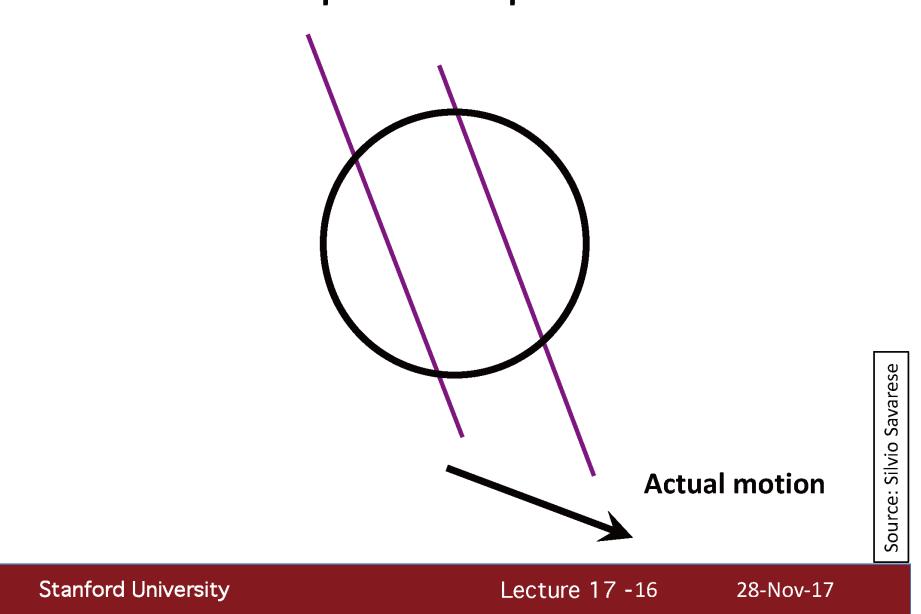
Lecture 17 -15

SGVR Lab

KAIST

6

The aperture problem



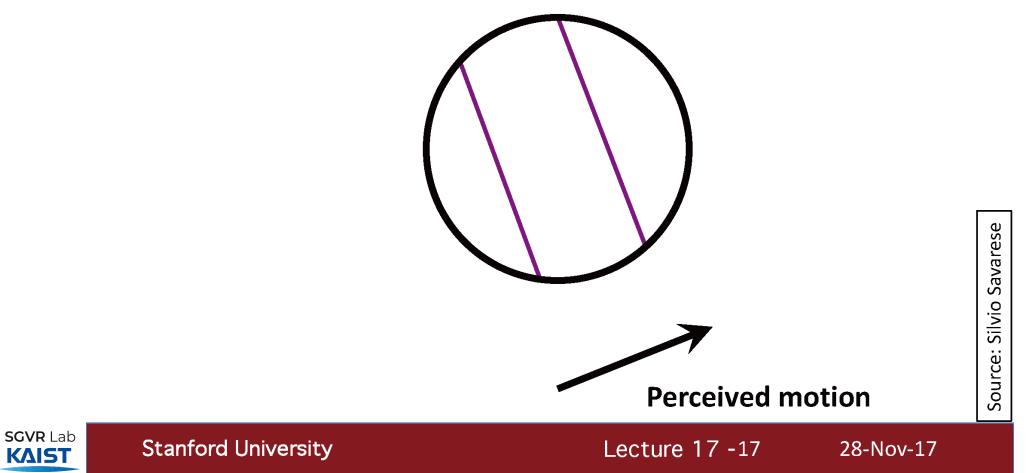
SGVR Lab

ΚΔΙΣΤ

Credit: Juan Carlos Niebles and Ranjay Krishna @ Stanford Vision and Learning Lab

7

The aperture problem



8

Lucas-Kanade flow Solving the ambiguity...

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In *Proceedings of the International Joint Conference on Artificial Intelligence*, pp. 674–679, 1981.

- How to get more equations for a pixel?
- Spatial coherence constraint:
- Assume the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel

$$0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$$

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

SGVR Lab

Stanford University

Lecture 17 -21

9

Horn-Schunk method for optical flow

• The flow is formulated as a global energy function which is should be minimized:

$$E=\iint ig(I_xu+I_yv+I_tig)^2+lpha^2(\|
abla u\|^2+\|
abla v\|^2)ig]\,\mathrm{d}x\mathrm{d}y$$

• The first part of the function is the brightness consistency.

10

Horn-Schunk method for optical flow

• The flow is formulated as a global energy function which is should be minimized:

$$E= \iint ig[(I_x u+I_y v+I_t)^2+lpha^2 \left\|
abla u
ight\|^2+ \|
abla v
ight\|^2ig] \mathrm{d}x\mathrm{d}y$$

 The second part is the smoothness constraint. It's trying to make sure that the changes between frames are small.

Lecture 17 - 37

Why do we need Optical Flow?

Without Optical Flow

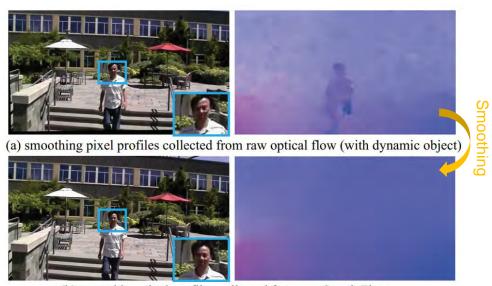
Kids today won't know what this is

https://www.pinterest.com/pin/527836018822238481/

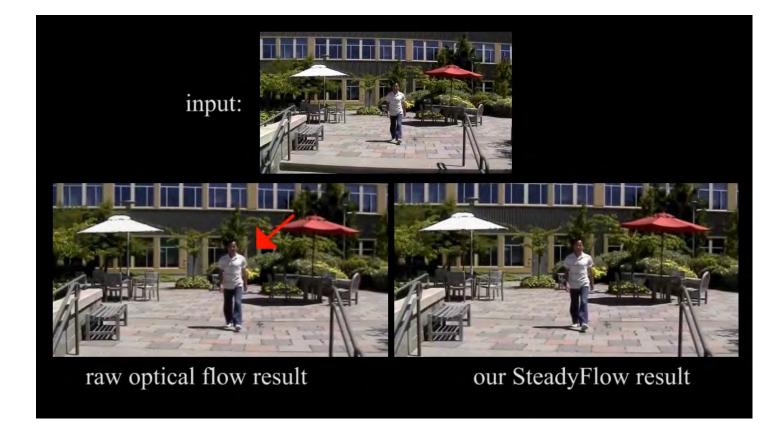
With Optical Flow

https://harrisburg.craigslist.org/sys/d/camp-hill-dell-n231-black-usb-optical/7720318568.html

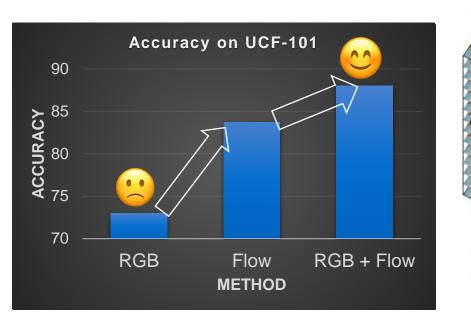
• Video stabilization by Spatially Smooth Optical Flow (SteadyFlow; CVPR 2014)

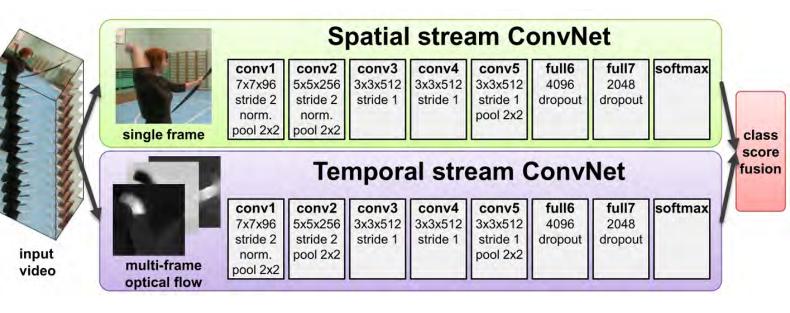


(b) smoothing pixel profiles collected from our SteadyFlow



• Action recognition by two-stream networks (NIPS 2014)





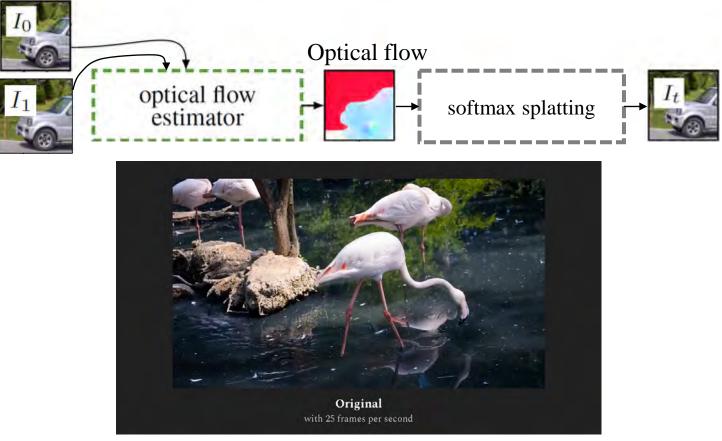
• Video inpainting by **optical flow-guided algorithm** (CVPR 2019)

bidirection merge

This is a film clip from Captain American: Civil War

Deep Flow-Guided Video Inpainting (CVPR 2019)

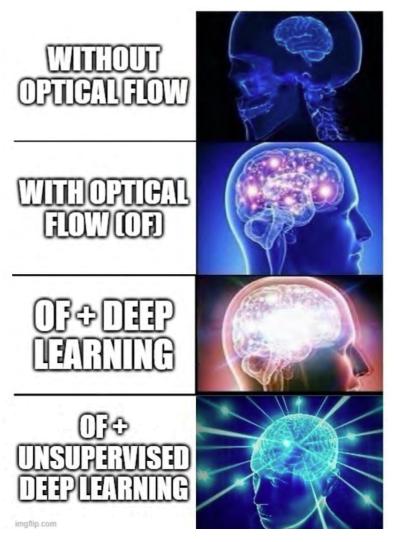
• Video frame interpolation with **optical flow + splatting** (CVPR 2020)



Softmax Splatting for Video Frame Interpolation (CVPR 2020)

In this talk...

AI Vision System



Deep Optical Flow Estimation

Overview

Limitation of Classical Methods

Classical Optical Flow

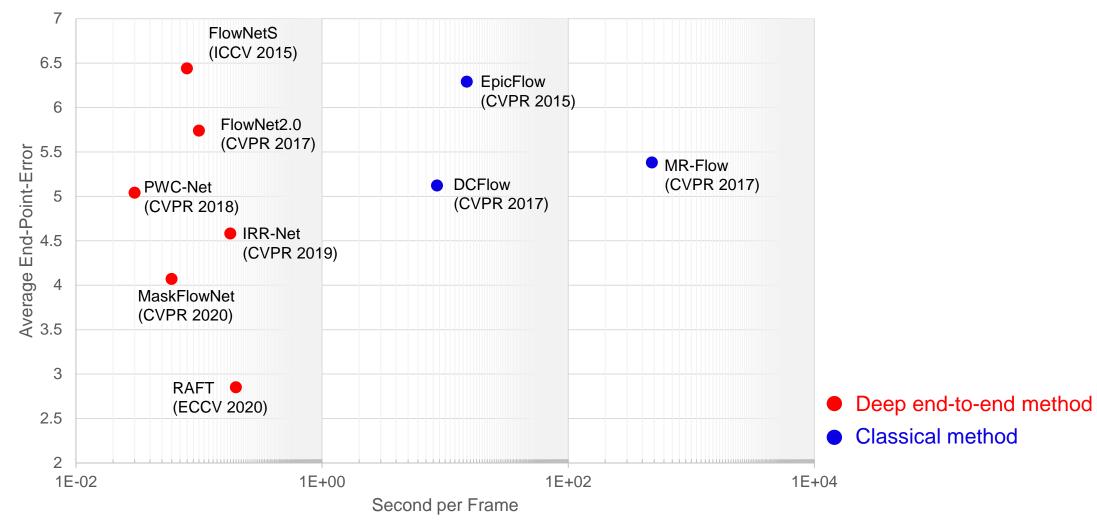
- **Optical** flow is the **apparent** motion of brightness patterns in the image
 - Motion can be caused by lighting changes without any actual motion

Deep Optical Flow

- Optical flow is not very optical
- We understand optical flow as actual motion made in a scene
- Purely optical (classical) → Semantical inference (current)

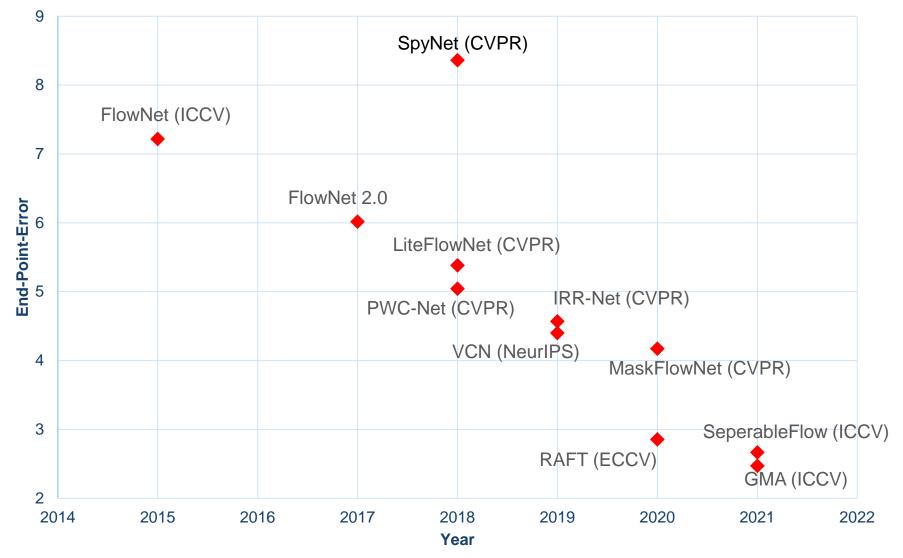
Performance Difference

MPI Sintel Final Benchmark

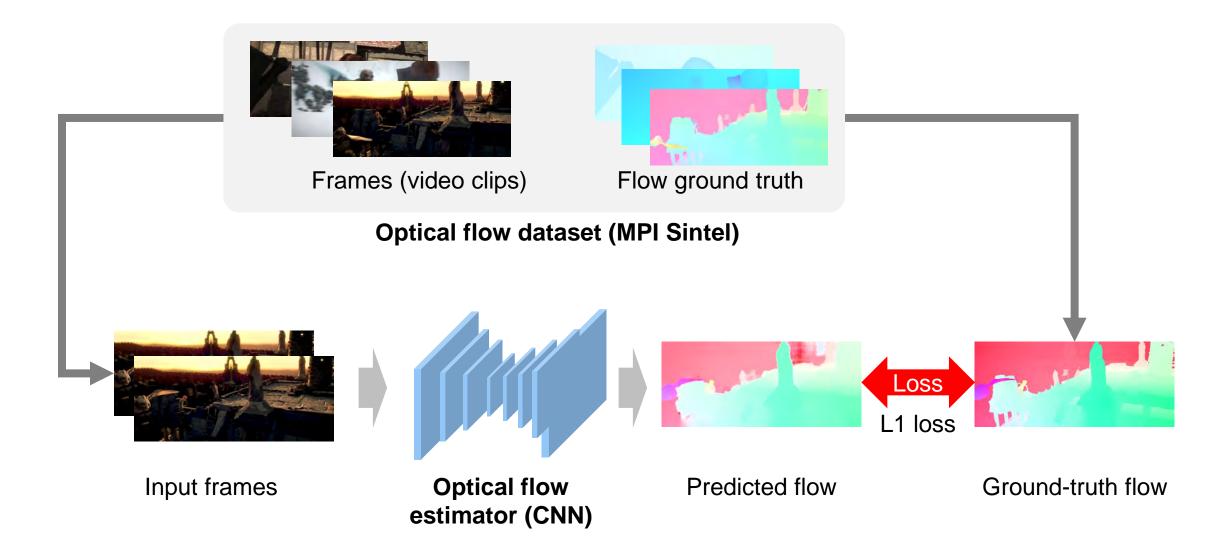


Deep Architectures for Optical Flow

Performance / Year (Sintel Final Test)



How to Learn Optical Flow? (end-to-end deep learning)

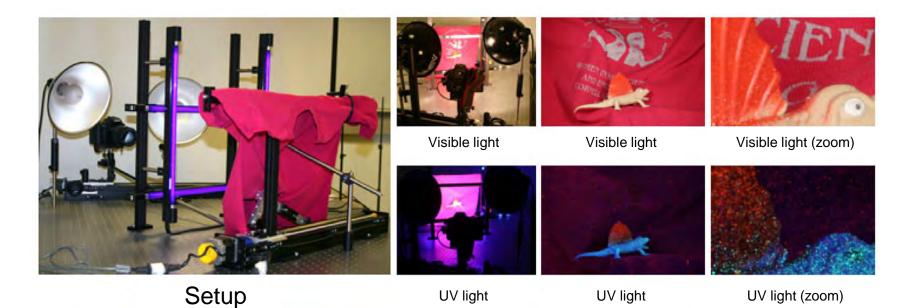


How to Make Optical Flow Datasets?

- Middlebury
 - ① Spray some fluorescent paint to surfaces
 - ② Take two pictures in different light types (visible / UV)
 - ③ Move objects and repeat ①-②
- Fluorescent pattern in UV light gives optical flow (correspondence) ground truth!

Image

Flow

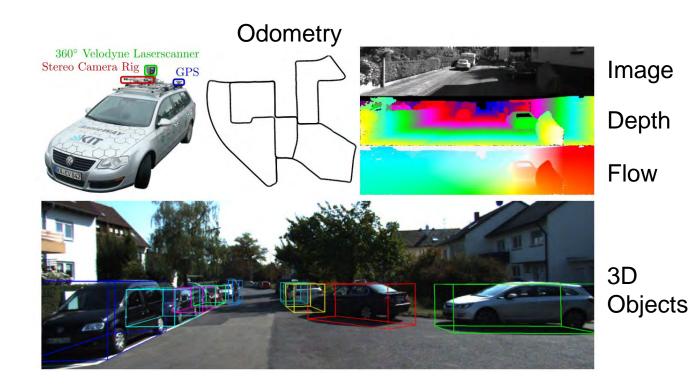


A Database and Evaluation Methodology for Optical Flow, IJCV 2011

How to Make Optical Flow Datasets?

• KITTI

- Sensors: Cameras, Velodyne (LiDAR), GPS, IMU
- ② Collect data from sensors
- ③ Calibrate each data
- (4) Register 3D point clouds (with some manual matching)
- Manually remove some ambiguous regions (windows, fences ...)



How to Make Optical Flow Datasets?

- Real datasets are not enough (GT in low quality & low quantity)
- Synthetic datasets
 Infinitely many samples!
 Lacks some realism...

FlyingChairs (ICCV 2015) FlyingThings3D (CVPR 2017)

MPI Sintel

(ECCV 2012)

• MPI Sintel (ECCV2012)

• KITTI 2012 (CVPR 2012), KITTI 2015 (CVPR 2015)

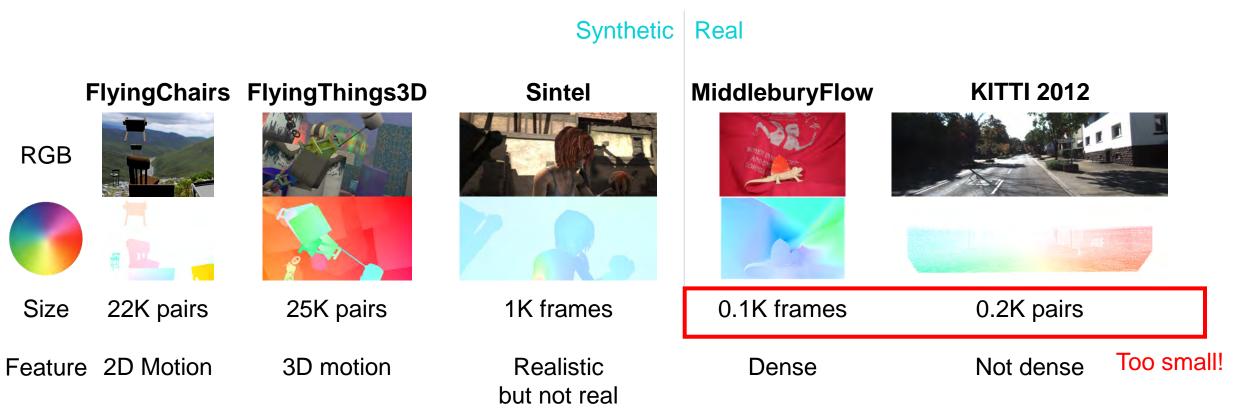
- MPI Sintel (ECCV2012)
- Spec
 - 1041 training pairs
 - 552 testing pairs
 - 1024x436 resolutions
- Focused on realistic effects
 - Motion blur, lighting effects, extreme camera movement ...
- Dense optical flow is provided
 - Rendered dataset!

- KITTI 2012 (CVPR 2012), KITTI 2015 (CVPR 2015)
- Spec
 - 200 training pairs
 - 200 testing pairs
 - 1242x375 resolution
- Real-world driving data
 - Extreme shadows are the biggest challenge
- Sparse optical flow is provided
 - Real-world videos have non-matched pixels

• MPI Sintel (ECCV2012)

• KITTI 2012 (CVPR 2012), KITTI 2015 (CVPR 2015)

Datasets for Optical Flow Estimation



Unsupervised Optical Flow with Deep Feature Similarity

Unsupervised Learning of Optical Flow with Deep Feature Similarity Woobin Im, Tae-Kyun Kim, and Sung-Eui Yoon ECCV 2020

Horn-Schunk method for optical flow

• The flow is formulated as a global energy function which is should be minimized:

$$E=\iint ig(I_xu+I_yv+I_tig)^2+lpha^2(\|
abla u\|^2+\|
abla v\|^2)ig]\,\mathrm{d}x\mathrm{d}y$$

• The first part of the function is the brightness consistency.

Classical methods does not require GT, but takes **few minutes / frame**

Can we learn an end-to-end model?

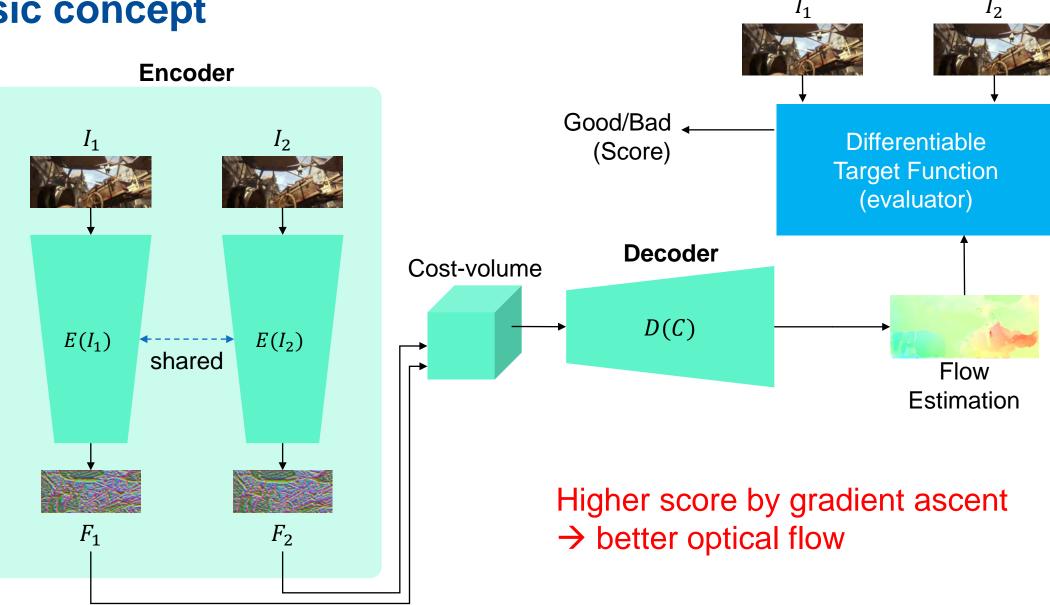
Stanford University

SGVR Lab

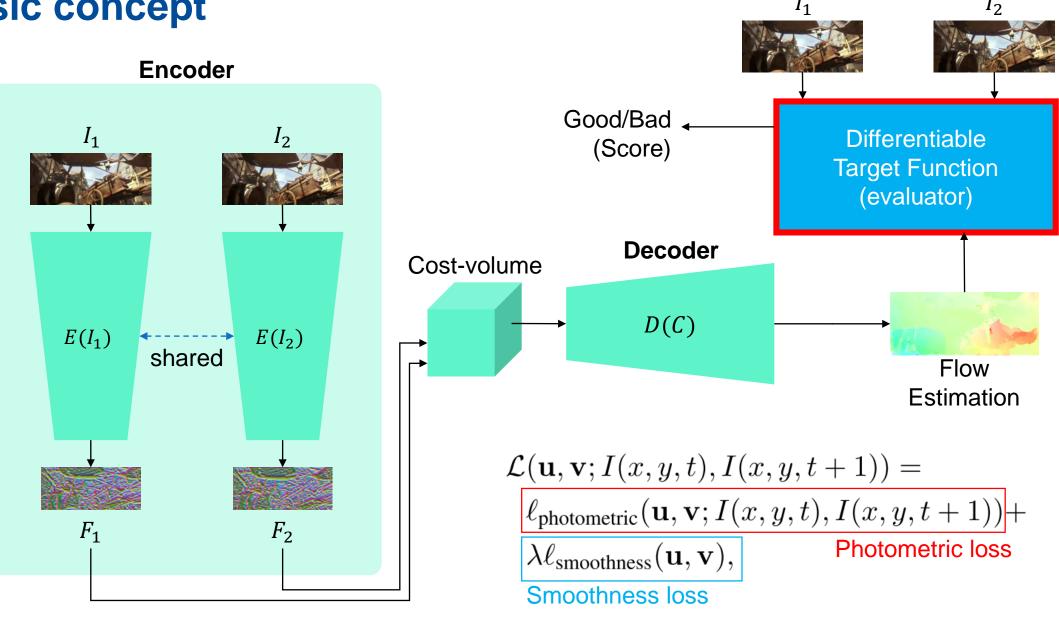
KAIST

Lecture 17 - 36

Basic concept



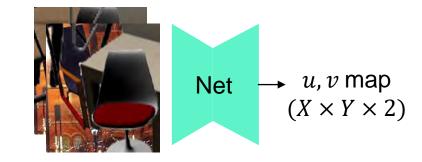
Basic concept



SGVR Lab

Back to basics: Unsupervised learning of optical flow via brightness

constancy and motion smoothness, ECCV workshop 2016

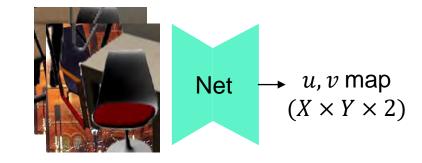


• Photometric consistency loss

$$L_{photo} = \sum_{(x,y)\in\Omega} \|I_1(x,y) - I_2(x+u,y+v)\|_2^2$$

We can compute gradient w.r.t. (u,v) to obtain a better flow!

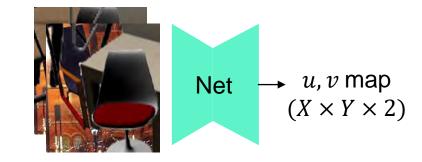
Estimated Flow at (x, y)= (u, v)+ u, y + v I_2



• Photometric consistency loss

$$L_{photo} = \sum_{(x,y)\in\Omega} \|I_1(x,y) - I_2(x+u,y+v)\|_2^2$$

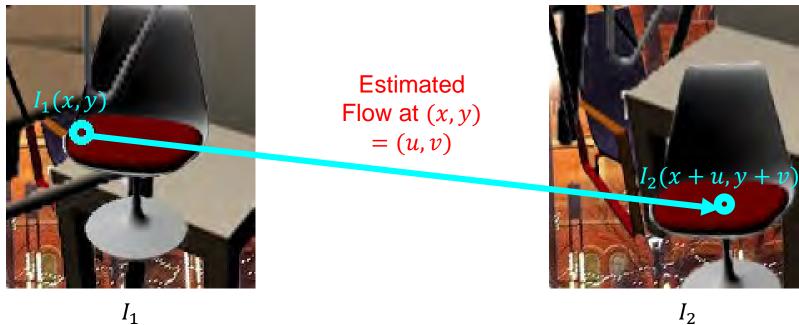
We can compute gradient w.r.t. (u, v) to obtain a better flow!

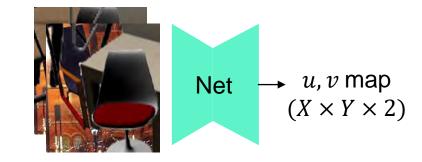


Photometric consistency loss

$$L_{photo} = \sum_{(x,y)\in\Omega} \|I_1(x,y) - I_2(x+u,y+v)\|_2^2$$

We can compute gradient w.r.t. (u, v) to obtain a better flow!

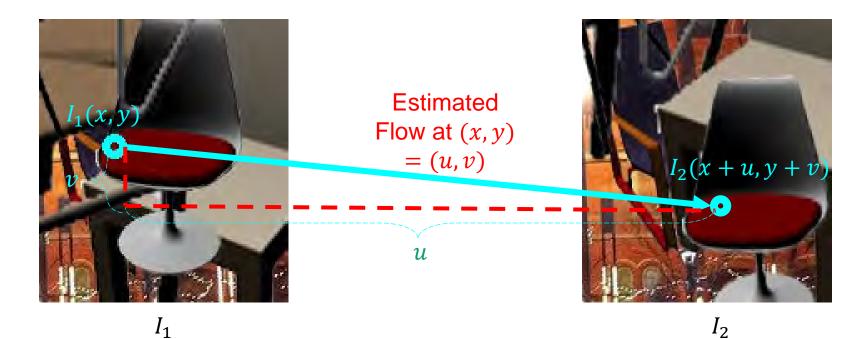


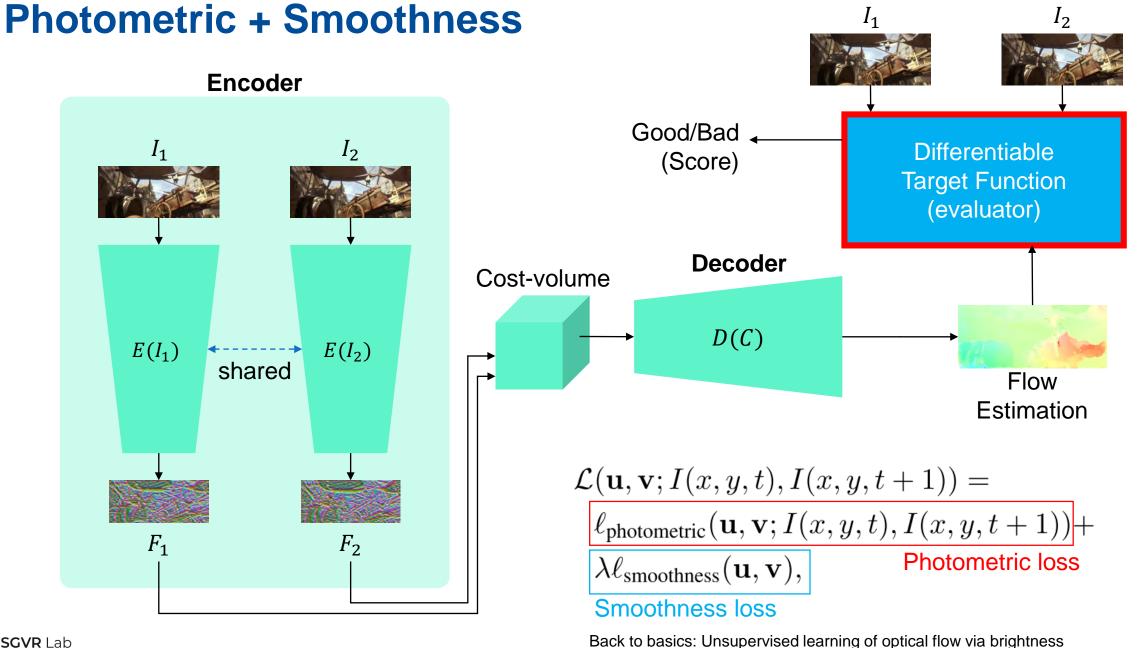


• Photometric consistency loss

$$L_{photo} = \sum_{(x,y)\in\Omega} \|I_1(x,y) - I_2(x+u,y+v)\|_2^2$$

We can compute gradient w.r.t. (u, v) to obtain a better flow!





constancy and motion smoothness, ECCV workshop 2016

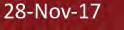
Smoothness constraint

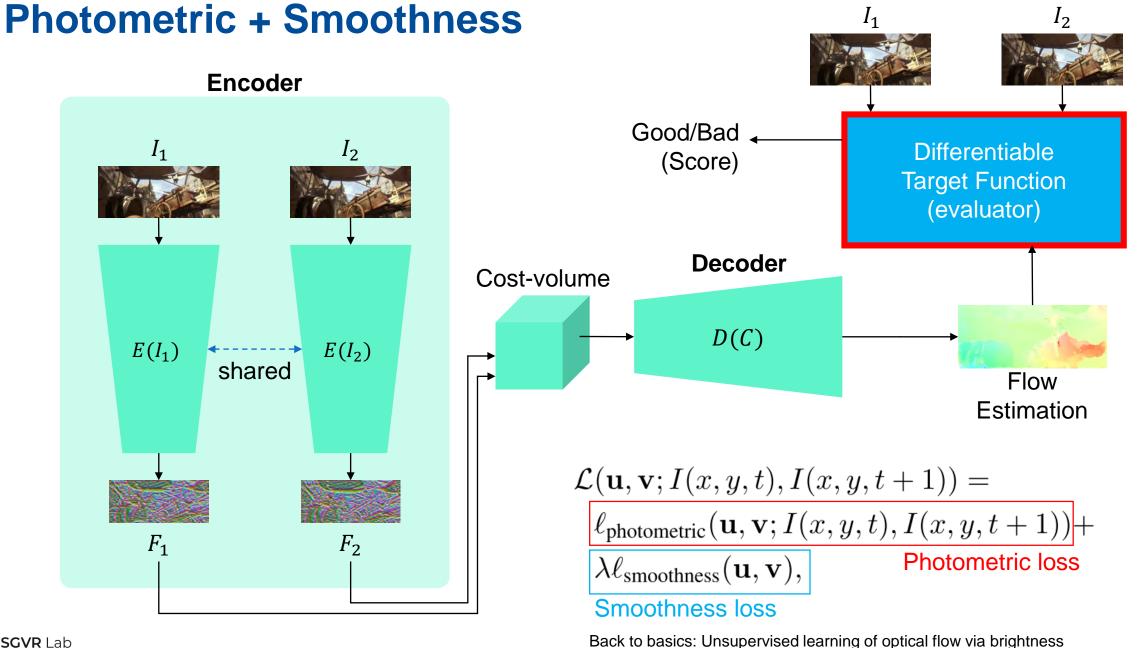
• The flow is formulated as a global energy function which is should be minimized:

$$E= \iint ig[(I_x u+I_y v+I_t)^2+lpha^2 \left\|
abla u
ight\|^2+\|
abla v
ight\|^2ig] \mathrm{d}x\mathrm{d}y$$

 The second part is the smoothness constraint. It's trying to make sure that the changes between frames are small.

Lecture 17 -37



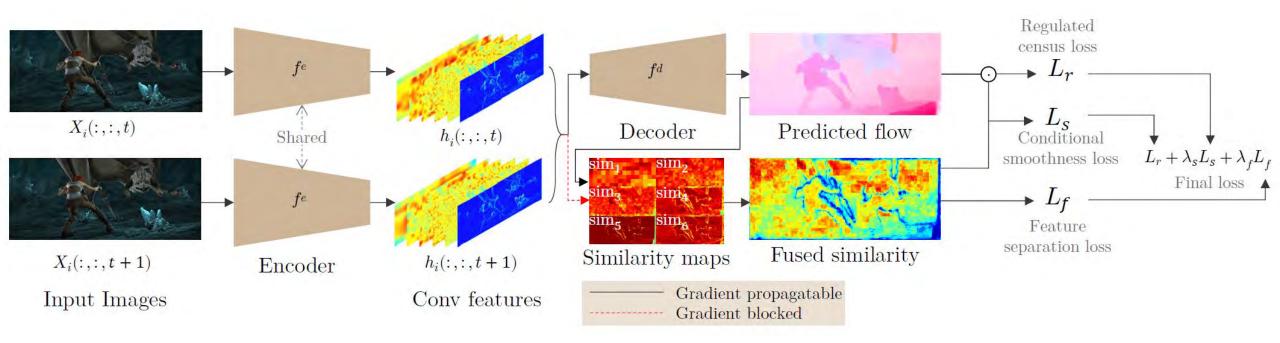


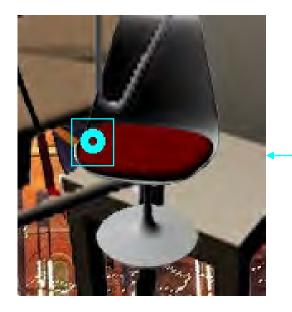
- As-is
 - Same as classical formulation [(

$$ig[(I_x u + I_y v + I_t)^2$$

- To-be (ours)
 - Deep, self-supervised formulation

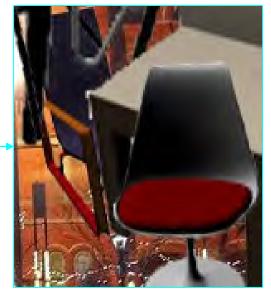
• Why not use deep feature for optical flow learning?





t

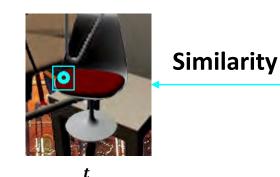
Similarity

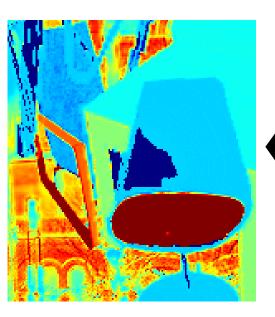


t+1

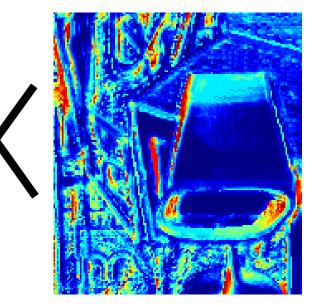
Unsupervised Optical Flow Estimation with Deep Feature Similarity, ECCV 2020

• In photometric loss we can use other features!

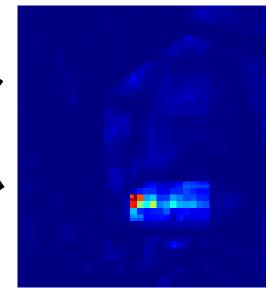




RGB



Most discriminative!



Deep feature

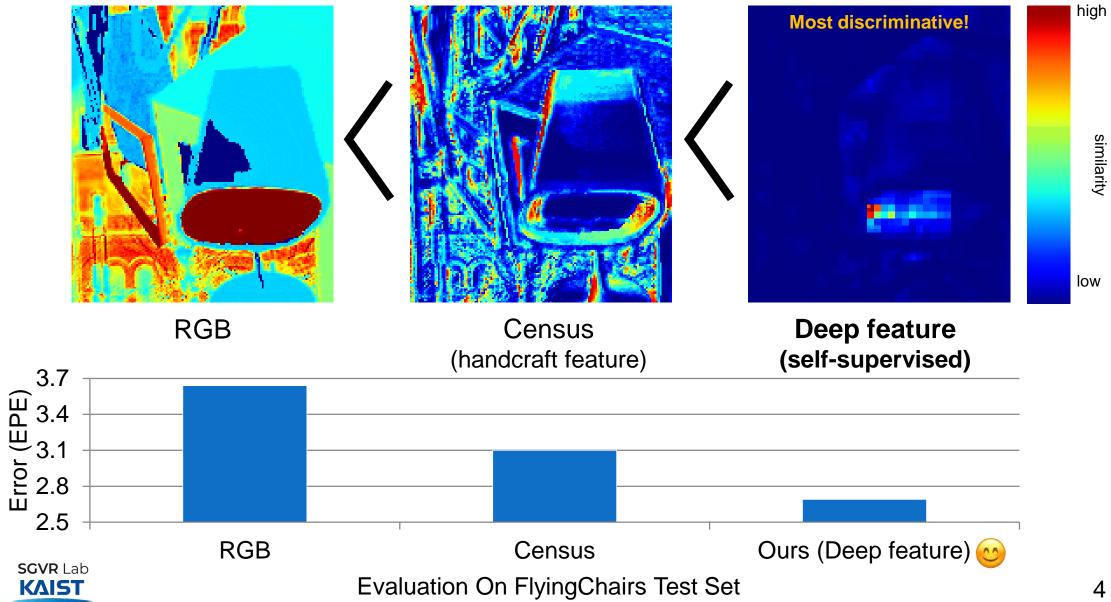
Unsupervised Optical Flow Estimation with Deep Feature Similarity, ECCV 2020

Census

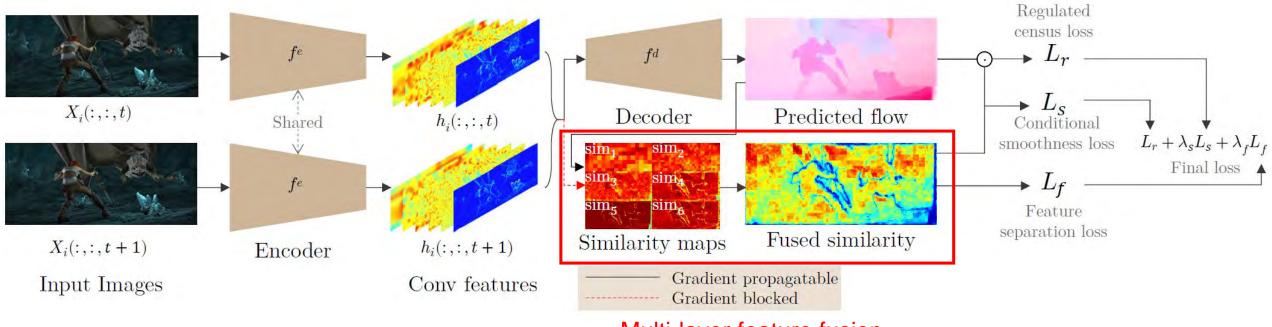
(handcraft feature)

Which feature to use?

End-Point-

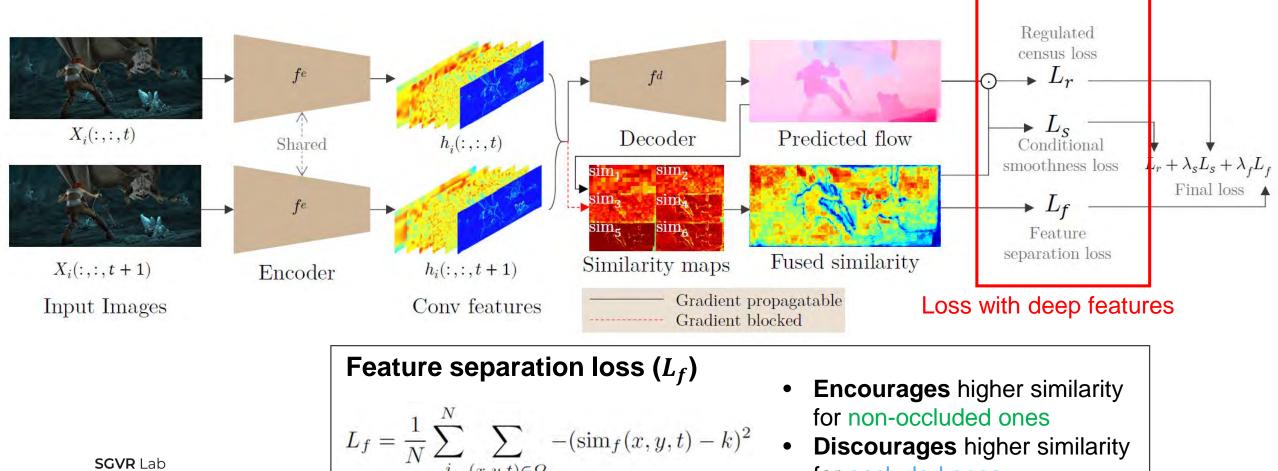


• Using deep feature for optical flow learning

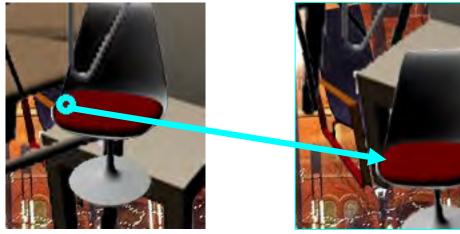


Multi-layer feature fusion

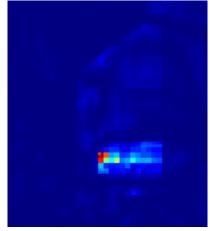
• Why not use deep feature for optical flow learning?



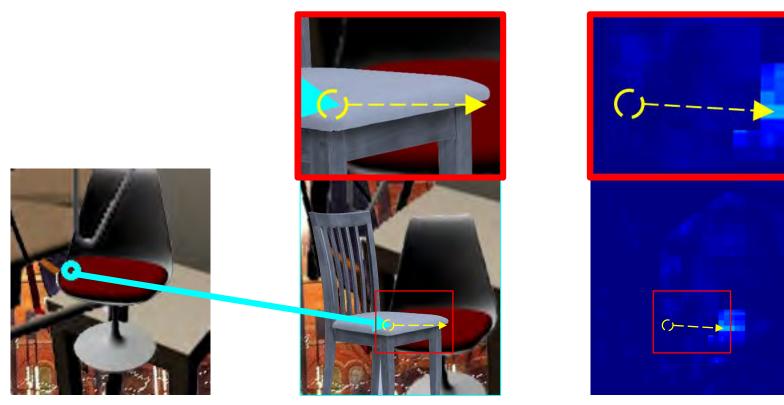
Discourages higher similarity for occluded ones



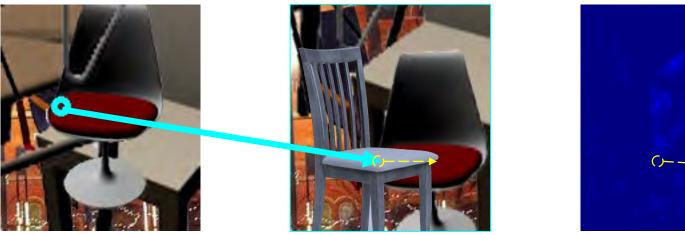
Good match

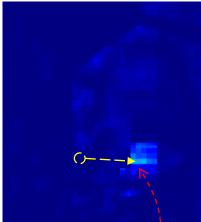


Good match



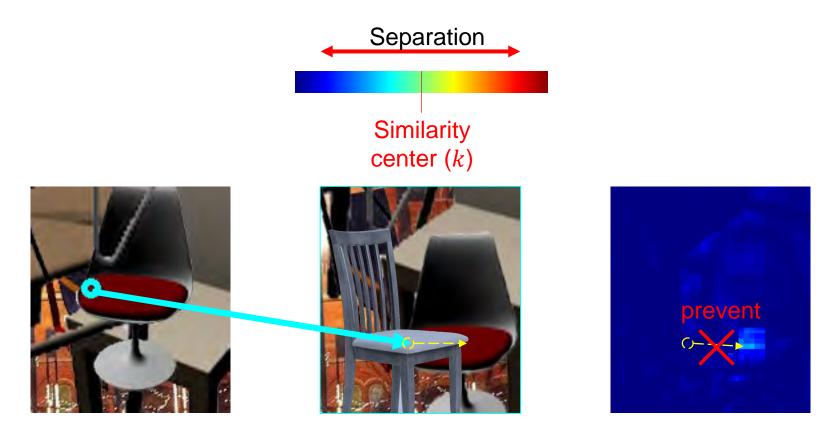
When occluded, maximizing similarity results in a bad solution





When occluded, maximizing similarity results in a bad solution

- Learning with photometric loss tends to make high-similarity solution
- **Deep feature separation loss** helps avoid this solution



If *similarity* < *k*, minimize *similarity* otherwise, maximize *similarity*

$$L_{f} = \frac{1}{N} \sum_{i}^{N} \sum_{(x,y,t) \in \Omega} -(\sin_{f}(x,y,t) - k)^{2}$$
Similarity threshold
$$k = \frac{1}{2}(k_{noc} + k_{occ})$$

$$k = \frac{1}{2}(k_{noc} + k_{occ})$$

$$k = \frac{1}{2}(k_{noc} + k_{occ})$$

$$L_{f} = \frac{1}{N} \sum_{i}^{N} \sum_{(x,y,t) \in \Omega} -(\sin_{f}(x,y,t) - k)^{2}$$
Similarity threshold
Related work (regularization for discriminative features)
• Guided Similarity Separation for Image Retrieval, NeurIPS 2019

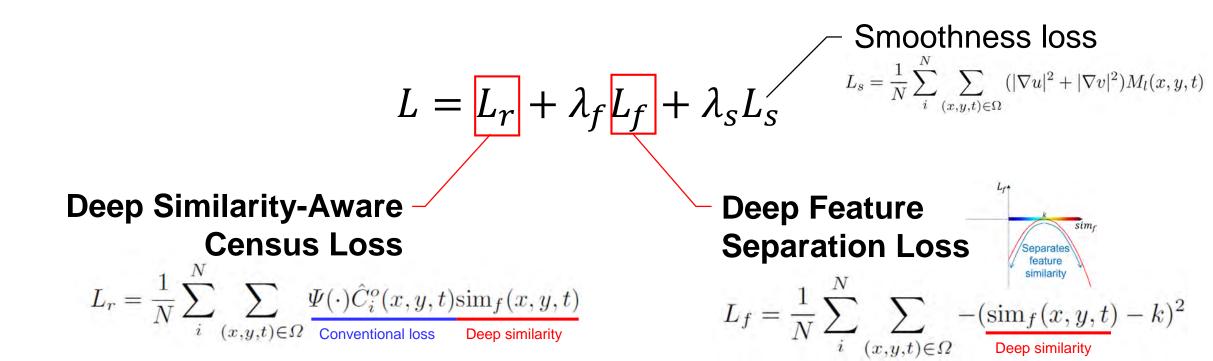
$$\mathcal{L}(s_{ij}) = -\frac{\alpha}{2}(s_{ij} - \beta)^{2}$$
• Semi-supervised Learning by Entropy Minimization, NeurIPS 2004

$$\mathcal{C}(\theta, \lambda; \mathcal{L}_{n}) = L(\theta; \mathcal{L}_{n}) - \lambda H_{emp}(Y|X, Z; \mathcal{L}_{n})$$
Similarity

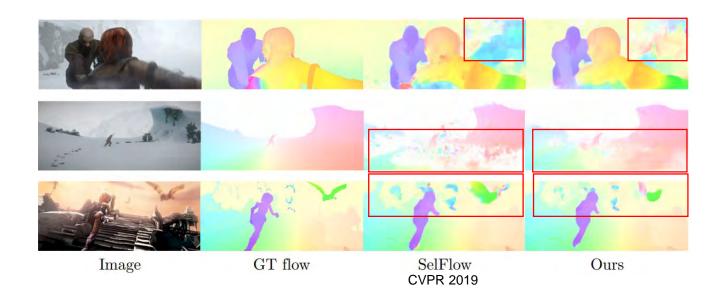
•

•

Final Loss Function



	FlyingChairs	Sintel Clean	Sintel Final
RGB	3.64	4.40	5.42
Census	2.93	3.15	3.86
Ours (deep)	2.69	2.86	3.57



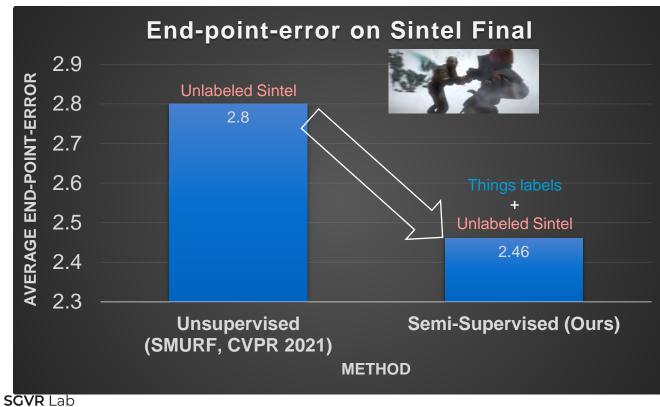
Semi-Supervised Optical Flow by Flow Supervisor

Semi-Supervised Learning of Optical Flow by Flow Supervisor Woobin Im, Sebin Lee, and Sung-Eui Yoon ECCV 2022

Semi-Supervised Optical Flow?

- Supervised methods do not use unlabeled data
- Unsupervised methods do not use any label

Semi-supervised learning method can improve by using synthetic labels



KAIST

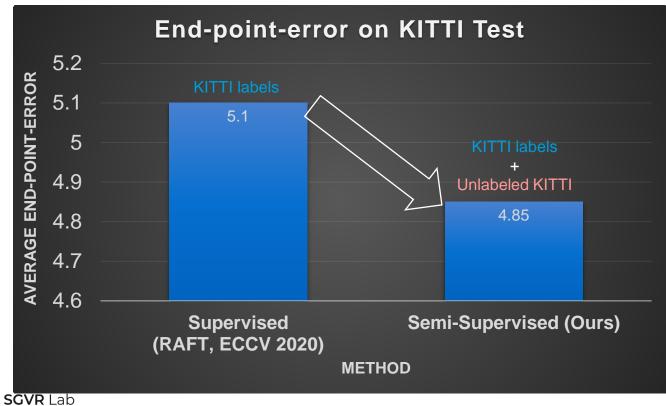
Things (labeled)

Sintel (unlabeled)

Semi-Supervised Optical Flow?

- Supervised methods do not use unlabeled data
- Unsupervised methods do not use any label

Semi-supervised learning method can improve by using additional labels



KAIST

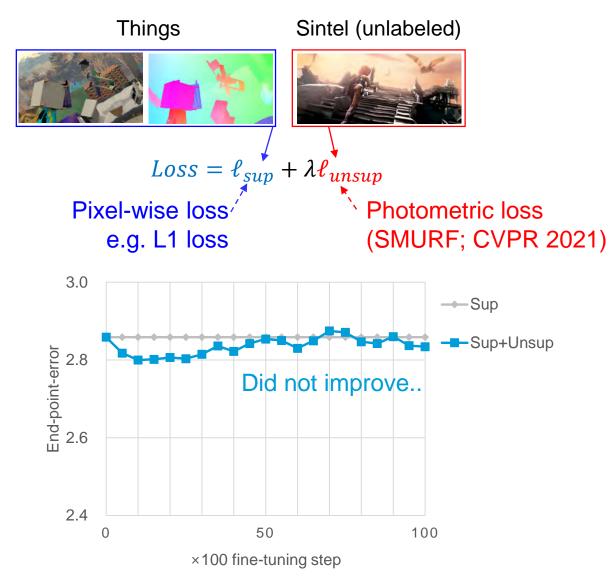
KITTI (labeled)

200 pairs labeled

KITTI (unlabeled)

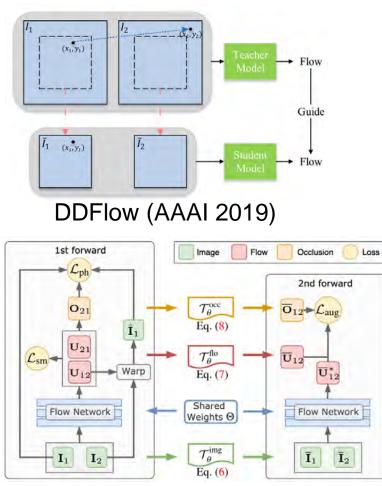
4,200 pairs unlabeled

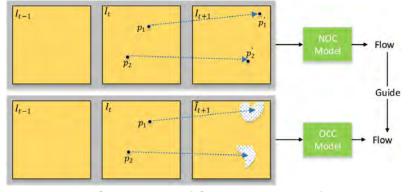
Naïve Approach



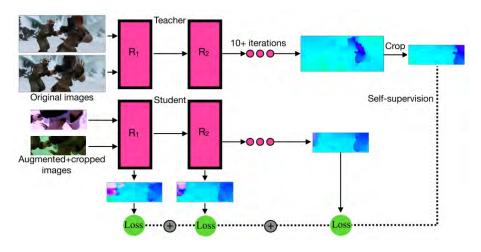
Self-Supervision Loss for Optical Flow Learning

Self-supervision for optical flow





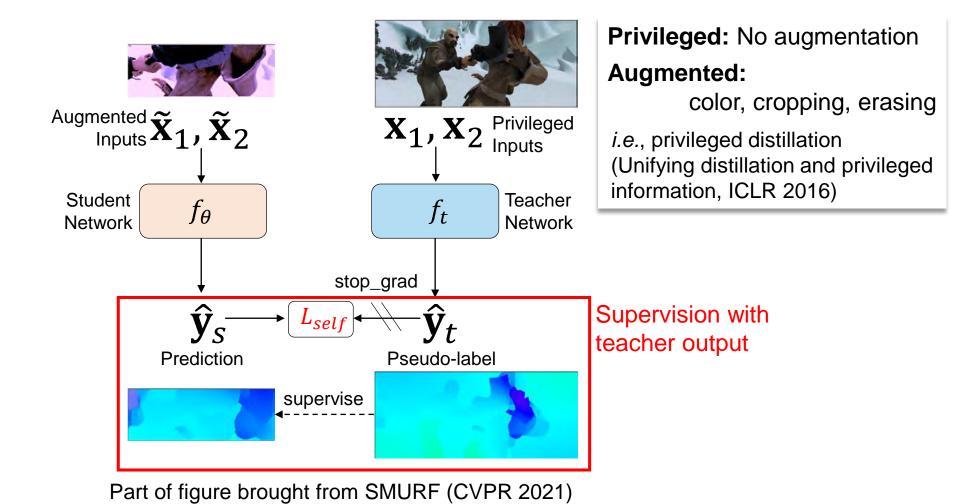
SelFlow (CVPR 2019)



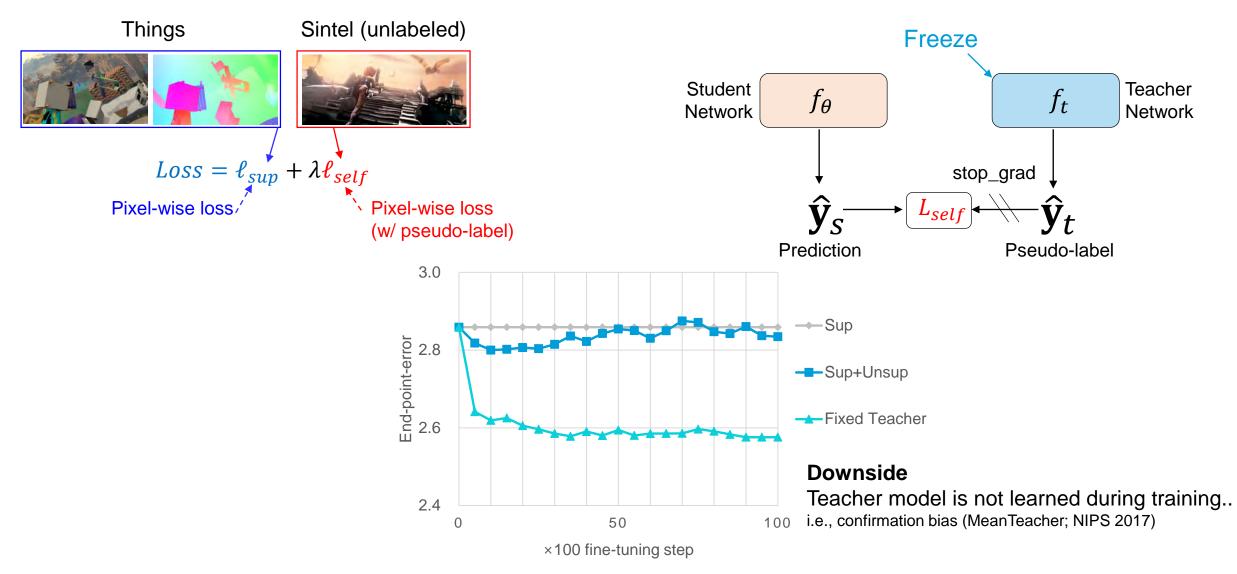
SMURF (CVPR 2022)

Self-Supervision Loss for Optical Flow Learning

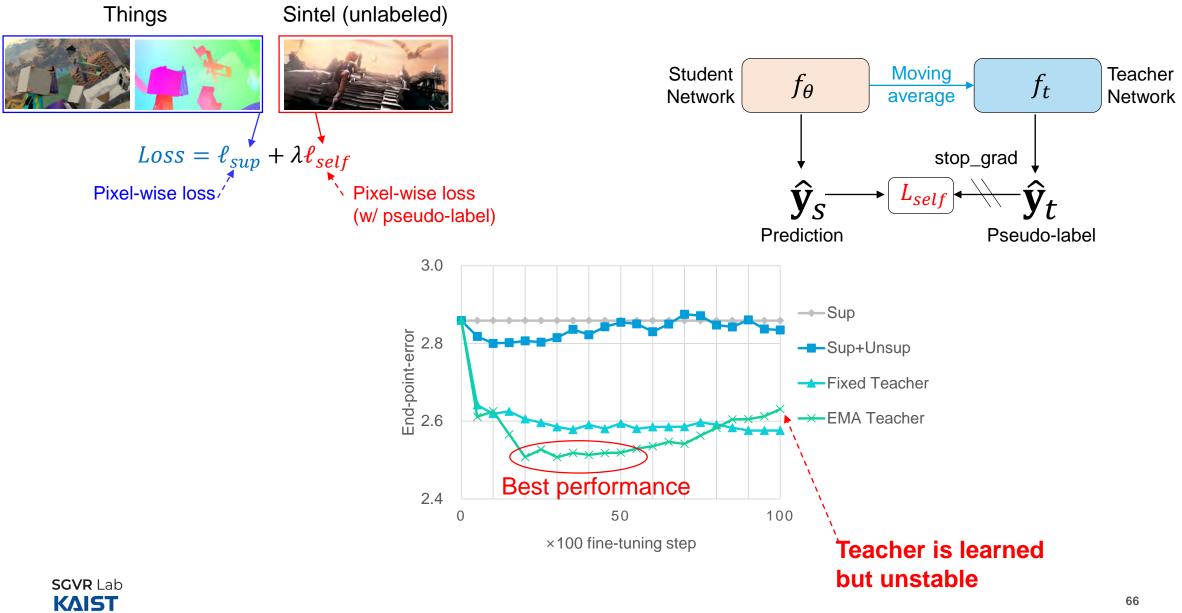
Self-supervision for optical flow



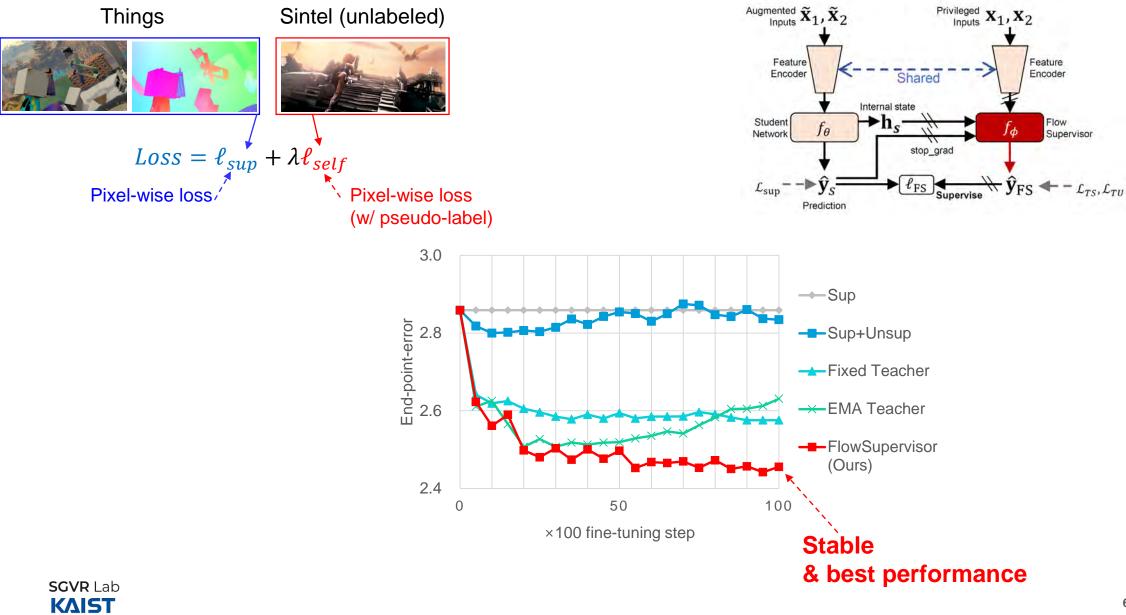
Fixed Teacher Approach



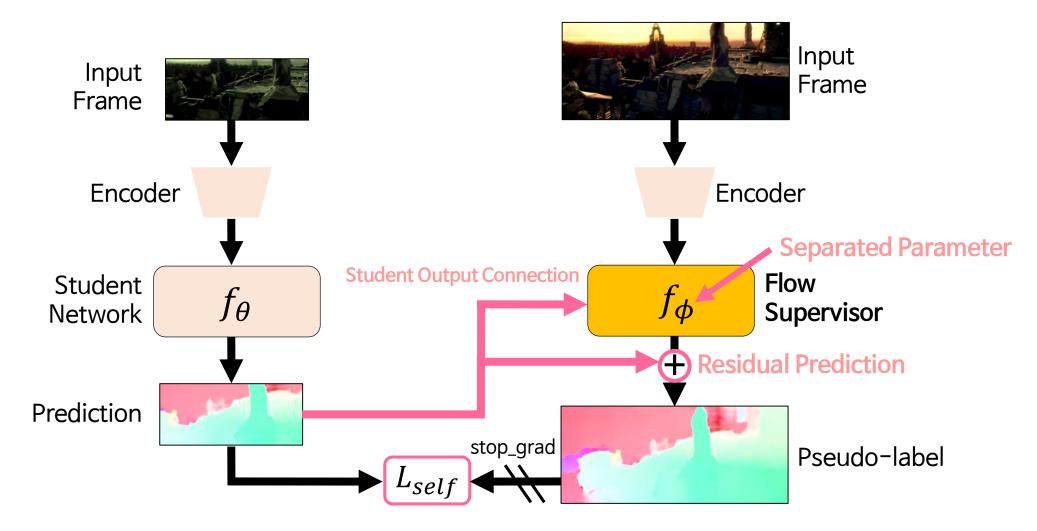
EMA (Moving Average) Approach



FlowSupervisor (Ours)



FlowSupervisor (Ours)

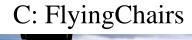


Comparison with Supervised Methods

W/	W/O	Method	Sintel		KITTI	
Label	Label		Clean	Final	EPE	Fl (%)
	-	RAFT	1.46	2.80	5.79	18.8
C+T						
	S/K	FlowSupervisor (RAFT)	1.30	2.46	3.35	11.12

Comparison with Supervised Methods

W/Label	W/O	Method	Sintel		KITTI	
	Label		Clean	Final	EPE	Fl (%)
C+T	-	RAFT (ECCV 2020)	1.46	2.80	5.79	18.8
		GMA (CVPR 2021)	1.30	2.74	4.69	17.1
		SeparableFlow (CVPR 2021)	1.30	2.59	4.60	15.9
	S/K	FlowSupervisor (RAFT)	1.30	2.46	3.35	11.12

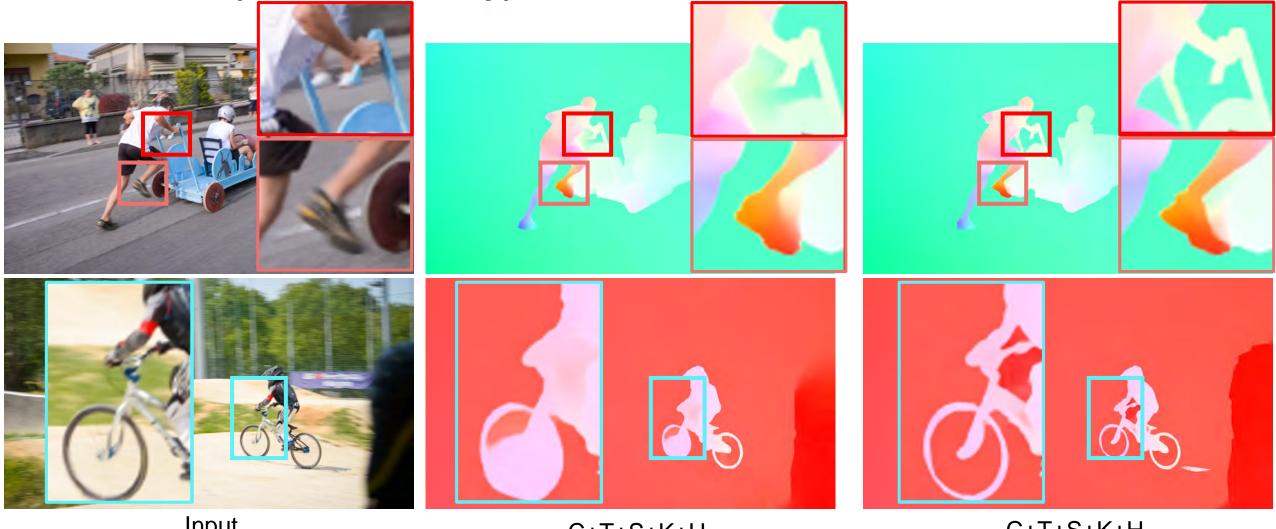


Comparison with Supervised Methods

W/Label	W/O	Method	Sintel		KITTI	
	Label		Clean	Final	EPE	Fl (%)
C+T	-	RAFT (ECCV 2020)	1.46	2.80	5.79	18.8
		GMA (CVPR 2021)	1.30	2.74	4.69	17.1
		SeparableFlow (CVPR 2021)	1.30	2.59	4.60	15.9
	S/K	FlowSupervisor (RAFT)	1.30	2.46	3.35	11.12
C+T+V	-	SeparableFlow (CVPR 2021)	-	-	2.60	7.74
	K	FlowSupervisor (RAFT)	-	-	2.39	7.63

SGVR Lab

DAVIS dataset (real-world, 1080p)



Input

C+T+S+K+H (Supervised-only)

C+T+S+K+H (Semi-supervised)

DAVIS dataset (real-world, 1080p)

Input

C+T+S+K+H (Supervised-only) C+T+S+K+H (**Semi-supervised**)

We've learned...

• What is optical flow?

• Pixel-level dense matching within a brief time frame.

• Deep Optical Flow

• Fast, accurate optical flow

Unsupervised Deep Optical Flow

• Learn deep optical flow without ground truth

Semi-Supervised Optical Flow

• Use existing ground truth with free videos as training set

Q&A

