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What we will learn today?

* Scale invariant region selection
— Automatic scale selection
— Laplacian-of-Gaussian detector
— Difference-of-Gaussian detector
— Combinations




From Points to Regions...

The Harris and Hessian operators define interest points.
— Precise localization - - :
— High repeatability

In order to compare those points, we need to compute a descriptor
over a region.

— How can we define such a region in a scale invariant manner?

[.e. how can we detect scale invariant interest regions?

Source: Bastian Leibe



Naive Approach: Exhaustive Search

* Multi-scale procedure
— Compare descriptors while varying the patch size
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Naive Approach: Exhaustive Search

* Comparing descriptors while varying the patch size

— Computationally inefficient |
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Automatic Scale Selection

* Solution:

— Design a function on the region, which is “scale invariant”
(the same for corresponding regions, even if they are at different
scales)

Example: average intensity. For corresponding regions (even of
different sizes) it will be the same.

— For a point in one image, we can consider it as a function of region size
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Automatic Scale Selection

» Common approach:

— Take a local maximum of this function.

— Observation: region size for which the maximum is achieved should be
invariant to image scale.
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Automatic Scale Selection

* Function responses for increasing scale (scale signature)
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Automatic Scale Selection
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Automatic Scale Selection

* Function responses for increasing scale (scale signature)
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Automatic Scale Selection

* Function responses for increasing scale (scale signature)
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Automatic Scale Selection

* Normalize: Rescale to fixed size
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What Is A Useful Signature Function?

* Laplacian-of-Gaussian = “blob™ detector
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Characteristic Scale

» We define the characteristic scale as the scale that produces
peak of Laplacian response
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Characteristic scale

T. Lindeberg (1998). "Feature detection with automatic scale selection.” International Journal of
Computer Vision 30 (2): pp 77--116.
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Laplacian-of-Gaussian (LoG)

Interest points:
— Local maxima in scale
space of Laplacian-of-
Gaussian
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Laplacian-of-Gaussian (LoG)

Interest points:
— Local maxima in scale
space of Laplacian-of-
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Laplacian-of-Gaussian (LoG)

Interest points:
— Local maxima in scale
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Laplacian-of-Gaussian (LoG)

Interest points:
— Local maxima in scale
space of Laplacian-of-
Gaussian
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LoG Detector: Workflow
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LoG Detector: Workflow

sigma = 11.9912
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Workflow

LoG Detector
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Technical Detail

*» We can efficiently approximate the Laplacian with a
difference of Gaussians:

L=0"(G (x,y.0)+G (x.7.0)) .

(Laplacian) a3

DoG =G(x,v,ko)-G(x.v.0)

(Difference of Gaussians) — Lapicin
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Difference-of-Gaussian (DoG)

» Difference of Gaussians as approximation of the LoG
— This is used e.g. in Lowe’s SIFT pipeline
for feature detection.
* Advantages

— No need to compute 2" derivatives

— Gaussians are computed anyway, e.g.
in @ Gaussian pyramid.
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Key point localization with DoG

* Detect maxima of A
difference-of-Gaussian
(DoG) in scale space
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Candidate keypoints:
list of (x,y,0)

* Eliminate edge responses
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DoG — Efficient Computation

* Computation in Gaussian scale pyramid
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Lowe’s DoG

Results
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Example of Keypoint Detection

(a) 233x189 image
(b) 832 DoG extrema

(c) 729 left after peak
value threshold

(d) 536 left after testing
ratio of principle
curvatures (removing

edge responses)
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Harris-Laplace oty on

1. Initialization: Multiscale Harris corner detection
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Computing Harris function Detecting local maxima
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Harris-Laplace oty on

1. Initialization: Multiscale Harris corner detection

2. Scale selection based on Laplacian
(same procedure with Hessian = Hessian-Laplace)

Harris points

Harris-Laplace points
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Summary: Scale Invariant Detection

* Given: Two images of the same scene with a large scale
difference between them.

* Goal: Find the same interest points independently in
each image.

* Solution: Search for maxima of suitable functions in
scale and in space (over the image).

* Two strategies
— Laplacian-of-Gaussian (LoG)
— Difference-of-Gaussian (DoG) as a fast approximation

— These can be used either on their own, or in combinations
with single-scale keypoint detectors (Harris, Hessian).
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What we will learn today?

* Local descriptors
— Anintro
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Local Descriptors

* We know how to detect points

* Next question:

How to describe them for matching?

= Next lecture...
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Local Descriptors

* We know how to detect points

* Next question:

How to describe them for matching?

1. Invariant
2. Distinctive

Lecture 11 - 82
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e Go over the next lecture slides

e Come up with one guestion on what we
have discussed today and submit at the
beginning of the next class

O for no questions

2 for typical questions

3 for questions with thoughts

4 for questions that surprised me
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