WST665/CS770A: Web-Scale Image Retrieval
Recent Image Retrieval Techniques
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e Go over some of recent image retrieval
techniques
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Video Google: A Text Retrieval

Approach to Object Matching
In Videos

Josef Sivic and Andrew Zisserman

Robotics Research Group, Department of Engineering Science

University of Oxford, United Kingdom

ICCV 03

Citation: over 1300 at 2011
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Motivations

e Retrieve key frames and shots of a video
containing a particular object

e Investigate whether a text retrieval
approach can be successful for object
recognition
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Viewpoint Invariant Description

e Find viewpoint covariant regions

e Produce elliptical affine invariant regions (e.g., Shape
Adapted (SA) and Maximally Stable(MS))

e SA regions centered on corner like features

e MS regions correspond to high contrast with respect to
their surroundings (dark window, gray wall...)

e Compute a SIFT descriptor for each region

KAIST
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e Affinely-invariant stable regions in the
Image

e can be used to localize regions around
keypoints

e We will use only SIFT descriptors that are
Inside of MSER regions
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Figure 1: Top row: Two frames showing the same scene from
very different camera viewpoints (from the film “Run Lola Run’).
Middle row: frames with detected affine invariant regions super-
imposed. ‘Maximally Stable’” (MS) regions are in yellow. ‘Shape
Adapted” (SA) regions are in cyan. Bottom row: Final matched
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e Quantize descriptor vectors into clusters,
which are visual ‘word’ for text retrieval

e Performed with K-means clustering

e Produce about 6K and 10K clusters for
Shape adapted and Maximally Stable
regions respectively

e Chosen empirically to maximize retrieval
results

KAIST



/7 NA

-IVIE«

Q)
U)

Al
 CIU

]
I‘I | 7 WY |

ering

(f)

e Minimize the within-cluster sum of squares

(WCSS)
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1) k initial "means” (in this case
k=3) are randomly selected
from the data set (shown in
color).

Demonstration of the standard algorithm
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2) k clusters are created by 3) The centroid of each ofthe k& 4) Steps 2 and 3 are repeated
associating every observation clusters becomes the new until convergence has been
with the nearest mean. The means. reached.

partitions here represent the
Yoronoi diagram generated by
the means.
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Distance Function

e Use Mahalanobis distance as the distance function
for clustering:

d(Z,9) = /(T — HTSL(F - ).
, where S Is covariance matrix

e IfSis the identify matrix, it reduces to Euclidean
distance

e Decorrelate components of SIFT

e Instead, Euclidean distance may be used

10 KAIST
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e Each document is represented by k-vector (i,....t,....%)"

e Weighting by tf-idf

e term frequency * log (inverse document frequency)

e n,, : # of occurrences of word i1 in document d

e n,: total # of words in the document d

e n; : # of occurrences of term i in the whole database
e N: # of documents in the whole database

e At the retrieval stage documents are ranked by
their normalized scalar product between query
vector V, and V, in database
KAIST
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ogle [Sivic et al. CVPR 2003]
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e MAP: mean average precision

Average precision—recall curve
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Video Google [Sivic et al. CVPR 2003]

e Performance highly depended on number of
k(visual words) : not scalable

13 KAIST
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Scalable Recognition with a
Vocabulary Tree

David Niter et al.

CVPR 2006

Citation: over 1000 at 2011
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e Hierarchical k-means clustering
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Figure 3. Three levels of a vocabulary tree with branch factor 10
populated to represent an image with 400 teatures.
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Figure 4. The database structure shown with two levels and a
branch factor of two. The leaft nodes have explicit inverted files
and the inner nodes have virtual inverted files that are computed as
the concatenation of the inverted files of the leat nodes.
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e Compute a histogram of visual words with
SIFTs

e Ildentify images that contain words of the
INput query image
e Can be done with the inverted file
e Sort images based on a similarity function

18 KAIST
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e On 8GB RAM machine(40000 images)queries took
1s, database creation took 2.5 days
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e Benefits:

e Allow faster image retrieval (and pre-
computation)

e Scales efficiently to a large number of images

e Problems:
e Too much memory requirement
e Quantization effects

KAIST
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Object retrieval with large
vocabularies and fast spatial
matching

Philbin et al.

CVPR 2007

Citation: over 350 at 2011
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Approximating K
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-means

e Use a forest of 8 randomized k-d trees

e Randomize splitting dimension among a set of
the dimensions with highest variance

e Randomly choose a point close to the median
for split value
e Helps to mitigate quantization effects

e Each tree iIs descending to leaf, distance
from boundaries are recorded in a prior

queue
e Similar to best-bin-first search

KAIST



e Algorithmic complexity of a single k-means
Iteration

e Reduces from O(NK) to O(NlogK), where N is the # of
features

e Achieved by multiple random kd-trees

e Find images with kd-trees too

e But using approximate K-means, performance is
superior!
e Due to reduction of quantization effect)

23 KAIST



Spatial Re-Ranking with RANSAC

O

CD

enerate hypotheses with pairs of
correspondlng features

e Assume a restricted transformation, since many
Images on the web are captured in particular
ways (axis-aligned ways)

e Evaluate other pairs and measure errors
e Re-ranking images by scoring the # of

INnliers

Transformation dof | Matrix Method / Rerank N 100 200 400 800
ranslation + 0 0 1o @y | 1 3dof 0.468 | 0.492 | 0.522 | 0.556
isotropic scale 3 0 qt i 4dof 0.465 | 0.490 | 0.521 | 0.555
I Y iii 5dof 0.467 | 0.491 | 0.526 | 0.560

translation + 1 a 0 t,
anisotropic scale 0 b f-y Method / Rerank N 100 200 400 800
_ - - i 3dof 0.644 | 0.650 | 0.652 | 0.655
translation + 5 || 0 o ™14 ddof 0.646 | 0.656 | 0.659 | 0.661
vertical shear b c ty iii 5dof 0.648 | 0.657 | 0.660 | 0.664

24 KAIST
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Clustering parameters mAP
# of descr. | Voc. size | k-means | AKM
800K 10K 0.355 0.358
IM 20K 0.384 0.385
SM S0K 0.464 0.453
16.7M IM 0.618
Method | Scoring | Average ‘ I:ﬁnggl
Levels Top |_s3s :
HKM | 3.16
HKM 2 3.07 |g°°
HKM 3 329 <,
HKM 4 3.29
AKM 3.45 3% 2000 4000 6000 8000 10000

Subset Size
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Method Dataset mAP
Bag-of-words | Spatial

(a) HKM-1 5K 0.439 0.469

(b) HKM-2 5K 0418

(c) HKM-3 5K 0.372

(d) HKM-4 5K 0.353

(e) AKM 5K 0.618 0.647

(f) AKM 5K+100K 0.490 0.541

(g) AKM 5K+100K+1M 0.393 0.465

Vocab | Bag of
Size words | Spatial

0.65¢

50K | 0473 | 0599 | osf
100K | 0.535 | 0.597 =
250K | 0.598 | 0.633 |E0°%
500K | 0.606 | 0.642 | _
750K | 0.609 | 0.630 / ~+-Bag of words

IM | 0.618 | 0.645 | o4sl ., L=Seatdl
) 0 2 4 6 8 10 12
1.25M | 0.602 | 0.625 Vocabulary Size  yf

" KAIST
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Total Recall: Automatic Query
Expansions with a Generative
Feature Model for Object
Retrieval

Chum et al.

ICCV 2007

Citation: over 150 at 2011
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e Improve recall with re-querying
combination of the original query and
result with spatial verification

query

Input DB

result
S

28 KAIST
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e Spatial verification

e Similar with the technique used in [Philbin et
al. 07]; Uses a RANSAC-Ilike algorithm

e ldentify a set of images that are very similar to
the original query image

KAIST
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e Extracts a generative model of an object
from the query region

e Compute a response set that are likely to
have been generated from the model

e The generative model

e Spatial configuration of visual words with a
background clutter

KAIST
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e Query expansion baseline

e Average term frequency vectors from the top 5 queries
without verification

e Transitive closure expansion
e A priority queue of verified images is keyed by # of
inliers
e Take the top image and query it as a new query
e Average query expansion

e A new guery is constructed by averaging the top 50
verified results (di is the term frequency vector of ith
verified image)

lave = 1y + 1
3 T (‘f“ Zf) KAIST
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1erative Models

e Multiple image resolution expansion

Consider images with different resolutions; higher
resolutions give more detailed information

Use a resolution band with (0, 4/5), (2/3, 3/2), and
(574, infinity)

Use averaged queries for each resolution band
Show the best result
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Original query

Top 4 images

Expanded results that were
not identified by the original

query
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Lost In Quantization:
Improving Particular Object
Retrieval In Large Scale Image
Databases

Philbin et al.

CVPR 2008

Citation: over 175 at 2011
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hilbin et al. CV

e 3 and 4 will be never matched in hard assignment

e No way of distinguishing 2 and 3 are closer than 1
and 2

e Soft assignment: use a weight vector

e A weight to a cluster is assigned proportional to the
distance between the descriptor and the center of the

36 cluster KAIST
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Results
ashmolean_3 christ_church_5
— e N o
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08 08
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E 06 E E 06
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0.2 0.2
045 s os T e e or e a5 1D
Recall Recall
Training data
Method Oxford Paris

Fixed Quantization [18]

0.164

HKM [14] (1 level)

0.422 | 0.401

HKM [14] (2 level)

0.410 | 0.340

Hard [15]

0.614 | 0.403

Soft

0.673 | 0.494

KAIST



P Y

Effect of Vocab lary Size and
I\IUIIIUEI UI nﬂages

0.65¢

0.6¢

0.55¢

< 05
0.45; |

0.4} % -

0.35 -+-Hard||
——Soft
0 2 4 6 8 10
Vocabulary Size « 10°

e For Oxford dataset with 1M vocabulary,
hard assignment index costs 36 MB and soft
costs 108MB with compression

38 KAIST
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City-Scale Location
Recognition

Schindler et al.

CVPR 2007

Citation: over 135 at 2011
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Figure 1. We perform location recognition on 20 km of urban
streetside imagery, storing 100 million features in a vocabulary
tree. the structure of which is determined by the features that are
maost informative about each location. Shown here is the path of

our vehicle over 20 km of urban terrain.
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Figure 8. Example database image sequences from commercial (top), residential (middle), and green (bottom) areas of a city. The signifi-
cant overlap between consecutive images allows us to determine which features are most informative about each location.
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e TOO many images
e Storage-space and search —time problems

e Main approaches

e Use a vocabulary tree to organize millions of
feature descriptors

e Choose more informative image sets for
Identifying locations, instead of organizing all
the images

KAIST
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e Want to find features
e Occur In all images of specific locations
e But, rarely or never occur anywhere outside of
that single location
e Can be captured formally in information
gain
e How much uncertainty is removed by additional
knowledge

43 KAIST
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e How much uncertainty is removed by
additional knowledge

H(X)=-) P(X =ux)log[P(X =x)] Entropy

H(X|Y)=) P =yH(X|Y =y)  Conditional entropy

Yy
I(XY)=H(X)-H(XI|Y) Information gain

[(L;\W;) = H(L;) —|H(L;|W;)

\ . —
Visual We want to minimize
word it

Binary value when we are
sat a particular location KAIST




Fewer BItsS

Someone tells you that the probabilities are not equal

P(X=A) = 1/2 |P(X=B) = 1/4

P(X=C) = 1/8

P(X=D) = 1/8

It's possible...

...to invent a coding for your transmission that only uses
1.75 bits on average per symbol. How?

Copyright © 2001, 2003, Andrew W. Moore

Information Gain: Slide 3




Fewer BIts

Someone tells you that the probabilities are not equal

P(X=A) = 1/2 |P(X=B) = 1/4

P(X=C) = 1/8

P(X=D) = 1/8

It's possible...

...to invent a coding for your transmission that only uses
1.75 bits on average per symbol. How?

A 0

B 10
C 110
D 111

(This is just one of several ways)

Copyright © 2001, 2003, Andrew W. Moore

Information Gain: Slide 4




General Case

Suppose X can have one of mvalues... V; I/, I/,

P(X=V.,)=p,| P(X=V,) =p, e | PX=V ) =p,

What's the smallest possible number of bits, on average, per
symbol, needed to transmit a stream of symbols drawn from
X's distribution? It's

H(X)=-p,log, p,-p,log, p,-...—p, log, p,
= _Z P; 10g2 P;
j=l1

H(X) = The entropy of X

e "“High Entropy” means X is from a uniform (boring) distribution

e "Low Entropy” means X is from varied (peaks and valleys) distribution
Copyright © 2001, 2003, Andrew W. Moore Information Gain: Slide 6




Specific Conditional Entropy H(Y|X=v)

X = College Major Definition of Specific Conditional
Y = Likes “Gladiator” ENntropy:

H(Y | X=v) = The entropy of Y

X Y among only those records in which
Math Yes X has value v
History | No Example:
€S Yes o H(Y|X=Math) = 1
Math No VI )
Math No * AY[X=History) =
CS Yes . H(}//ch.S) = 0
History | No
Math Yes

Copyright © 2001, 2003, Andrew W. Moore Information Gain: Slide 13




Y = Likes “"Gladiator”

Conditional Entropy H(Y|X)

X = College Major

X Y
Math Yes
History | No
CS Yes
Math No
Math No
CS Yes
History |[No
Math Yes

Definition of Conditional
Entropy:

H(Y | X) = The average specific
conditional entropy of Y

= if you choose a record at random what
will be the conditional entropy of VY,
conditioned on that row’s value of X

= Expected number of bits to transmit Y'if
both sides will know the value of X

= 2 Prob(X=v) H(Y| X = v)

Copyright © 2001, 2003, Andrew W. Moore Information Gain: Slide 14




Conditional Entropy

X = College Major Definition of Conditional Entropy:

Y = Likes "Gladiator” H("X) = The average conditional
entropy of Y

= 2 Prob(X=v)) H(Y | X = V)

X Y
Math |Yes Example:
History | No v, Prob(X=v;) |H(Y | X = v)
€ |Yes Math  |0.5 1
Math No . :
Math |No History |0.25 0
cs Yes CS 0.25 0
History | No
Math |Yes HNX)= 0.5%1+025%0+025%0=05

Copyright © 2001, 2003, Andrew W. Moore Information Gain: Slide 15




Information Gain

X = College Major Definition of Information Gain:

Y = Likes “Gladiator” IG(Y] X) = I must transmit Y,
How many bits on average
would it save me if both ends of

X Y the line knew X?
Math Yes IG(Y|X)= H(Y)-H(Y| X)
History | No
cS Yes Example:
Math No e H(Y)=1
Math No HOYIX) = 0.5
cs Yes * H(Y|X) =0.
History | No e ThusIG(Y|X)=1-0.5=0.5
Math Yes

Copyright © 2001, 2003, Andrew W. Moore Information Gain: Slide 16
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O ures

o Nwr.=a, Nwrm=05

e Npp . # of Images in the database
e N, : # of Images In each location

® H(L;|W;) =
a+b a a b b
" Npg [{l +b log,(a + b) i a-+b lﬂg’(a + b)]
Npgp—a—-b_ Np—a loo N —a
B f\"TDB [ﬂ"TDB —a—2> Ug’(i\rDB —a—0b
ﬂ"TDB — P\TL — b ﬂ"TDB — P\TL — b
log( )]

J'I\'TD B — 4 — b B,"TD B —a— b
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e IM VT, k=10, L=6, 7.5 million feature
points

|:_|"II5 = f Tt em s eis s en s semtms s
imfo—gzain
e J IO e b3 | = = —umifonm
065

0.6

055

0.5

045

0.4

Ferfommanos (% Best Match at Comect Loc ation)

035

0.3

025 i i i i i i
5000 10000 15000 20000 25000 30000
# Images in Database
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e 278 query images, 324 VT, 30K subset
Image database associated with GPS
coordinate, 0.2s query time

KAIST
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Packing Bag-of-Features

Jegou et al.

CVPR 2009

Citation: over 27 at 2011
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e Binary BOF is good for large vocabulary
size

mAP

binary BOF -+
BOF -

|
10° 10* 10°
vocabulary size k
Figure 1. Search quality: BOF vs binary BOF
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e 10kb per image for raw binary BOF, 1-2kb
for compressed inverted file

10GB oo """'-’ R v S iz

I
S S

0701 = S S WS

]
",
i 1. TRSETSRERRRPE SRR
™,
hY

E%

10MB

’;x L~ B

.
A
7

J,:FH' - Rt

2]

i raw binary BOF —|—
inverted file ---»-- _|
comprqssed inverted file o

e
- --;-_--;--.-:5&:;-’:-?—- e e e

memory usage of the index for one million images
0%

10° 10* 10°
vocabulary size k

Figure 2. Binary BOF vectors: memory usage of different indexing

structures for one million images.
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BOF miniBOF quantization query
descriptor descriptors +HE indexes
~ -
extraction O ojection —(0 000 G0+ R
of local 4 - .
descriptors o wih —>{0O 00O Q=) + h=()) - fusion image
+ O vocabulary . scores
quantization| o aggregators H
- —(0 000 () * hu()) —

e Split BOF vector, project it (aggregation:
dimension reduction from k to d)

1 1 1 1 0 ( 0
A = 0 0 1 ( 0 d
0 0 0 11 1

e Quantize each with k-means: use 4 bytes

e For better results, use Hamming
Embedding[ECCV 2008] for each
descriptors: a few more bits to encode the
location with each cluster KAIST
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58



DAaciil+a~

MNCoullo
method k mAP memory image

usage hits

BOF 1k 0414 3087 1484
BOF 20 0446 10,364 1471
BOF 200k 0.549 12,886 1412
binary BOF 20k 0.458 8291 147
binary BOF 200k 0.554 10,309 1412
compressed binary BOF” 20k 0.458 1,174 1471
compressed binary BOF™ 200k 0.554 1,830 1412
miniBOF, m=1 1k 0.255 20 19
miniBOF, m=4 1k 0.368 80 48
miniBOF, m=8 1k 0403 160 68
miniBOE, m=16 1k 0426 320 93
miniBOE, m=32 1k 0.452 640 120

Achieves about 2 times
lower memory given the
similar mAP

59

Table 1. Comparison of the different BOF approaches on the Hol-
idays dataset: search quality (mAP), memory usage (bytes per
database image), and average number of image hits per query im-
age. The hits values should be compared to the total number of
images (1491). m is the number of miniBOFs; "estimation based
on the binary BOF vector entropy.

Improve its quality by
using multiple BoF, while
keeping memory low

KAIST
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e Novel applications

KAIST
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