CS688/WST665: Web-Scale Image Retrieval Intro to Object Recognition

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/IR

What we will learn today?

- Introduction to object recognition
 - Representation
 - Learning
 - Recognition

What are the different visual recognition tasks?

Classification:

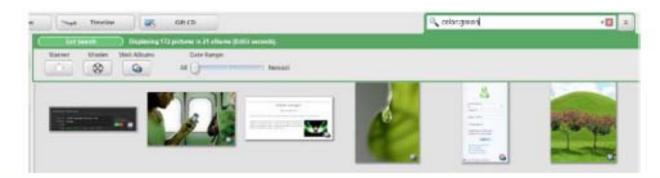
Does this image contain a building? [yes/no]

Classification:

Is this an beach?

Image Search

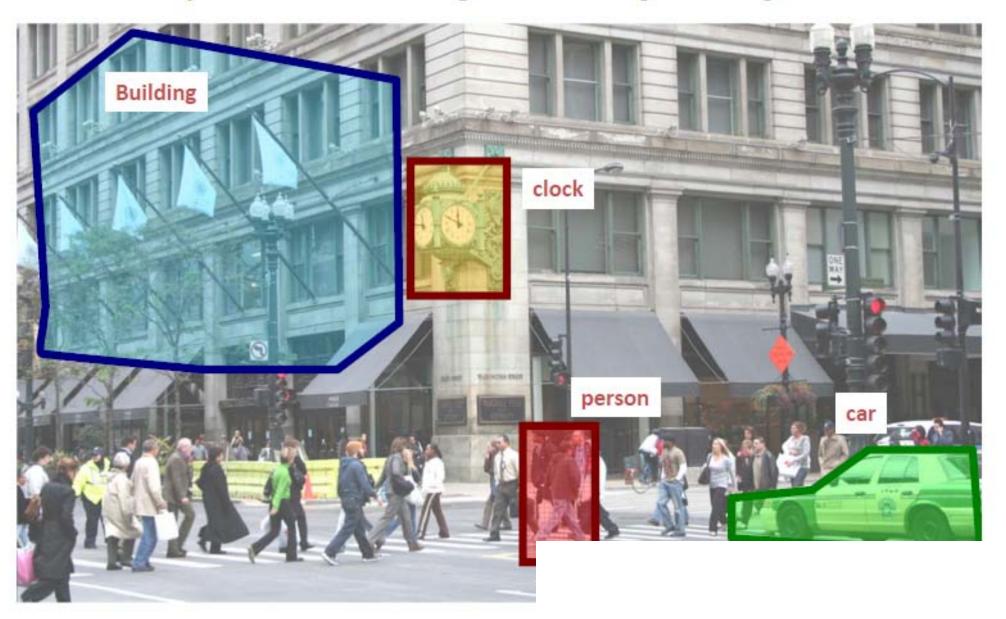
Organizing photo collections



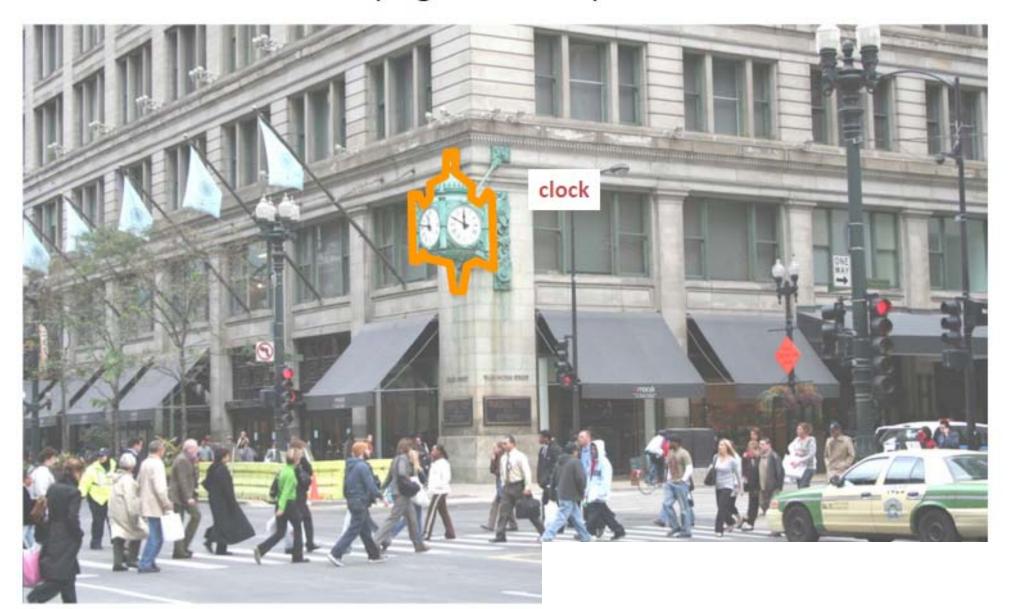
Does this image contain a car? [where?]

Does this image contain a car? [where?]

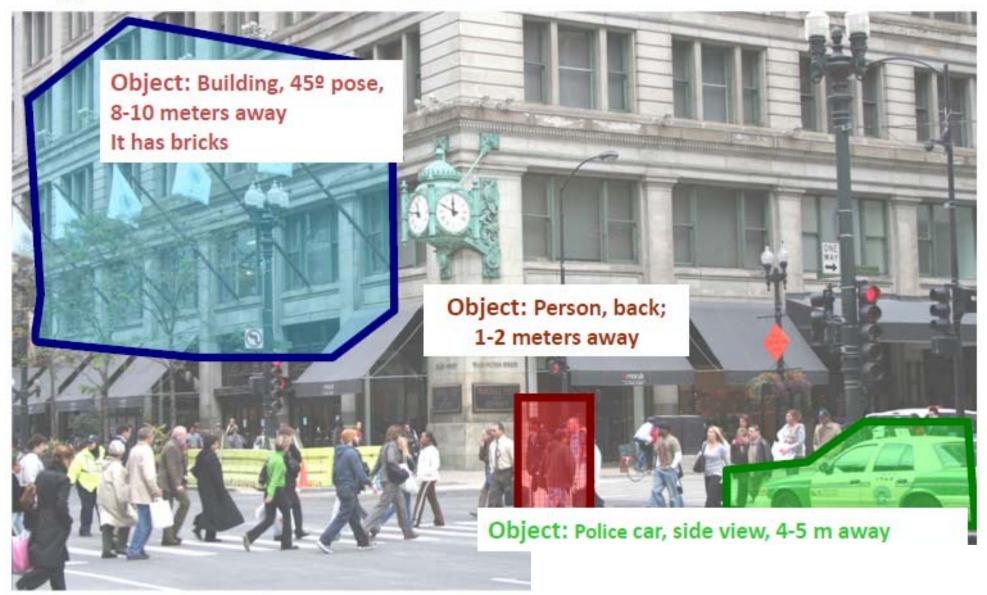
Which object does this image contain? [where?]



Accurate localization (segmentation)



Detection: Estimating object semantic & geometric attributes



Applications of Object Recognitions and Image Retrieval

Computational photography

Assistive technologies

Surveillance

Security

Assistive driving

Categorization vs Single instance recognition

Does this image contain the Chicago Macy building's?

Categorization vs Single instance recognition

Where is the crunchy nut?

Applications of Object Recognitions and Image Retrieval

Activity or Event recognition

What are these people doing?

Visual Recognition

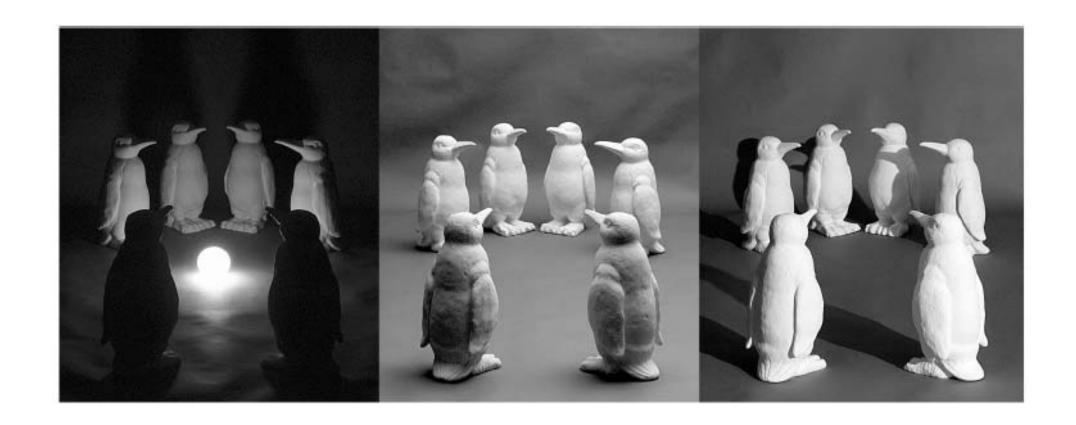
- Design algorithms that are capable to
 - Classify images or videos
 - Detect and localize objects
 - Estimate semantic and geometrical attributes
 - Classify human activities and events

Why is this challenging?

Challenges: viewpoint variation

Michelangelo 1475-1564

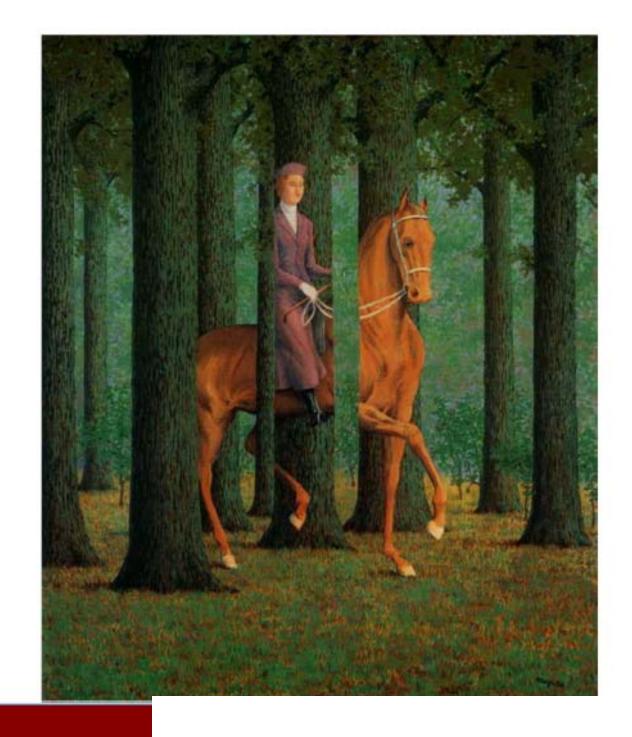
Challenges: illumination



Challenges: scale

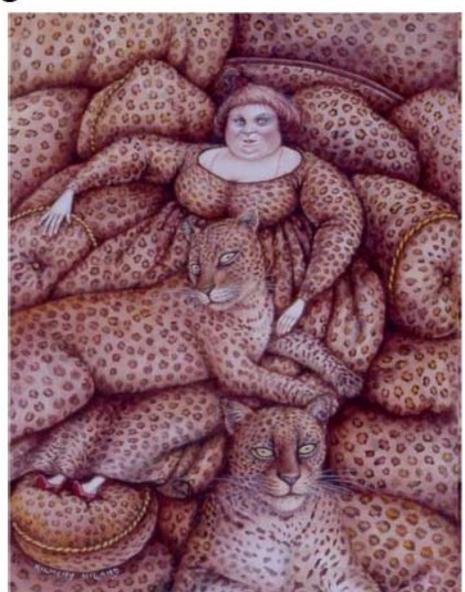
Challenges: deformation

Challenges: occlusion



Magritte, 1957

Challenges: background clutter



Kilmeny Niland. 1995

Challenges: intra-class variation

Basic issues

- Representation
 - How to represent an object category; which classification scheme?

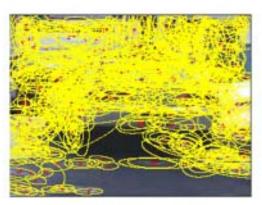
- Learning
 - How to learn the classifier, given training data

- Recognition
 - How the classifier is to be used on novel data

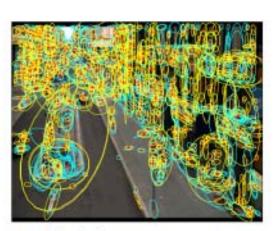
Image credits: L. Fei-Fei, E. Nowak, J. Sivic

Representation

- Building blocks: Sampling strategies



Interest operators

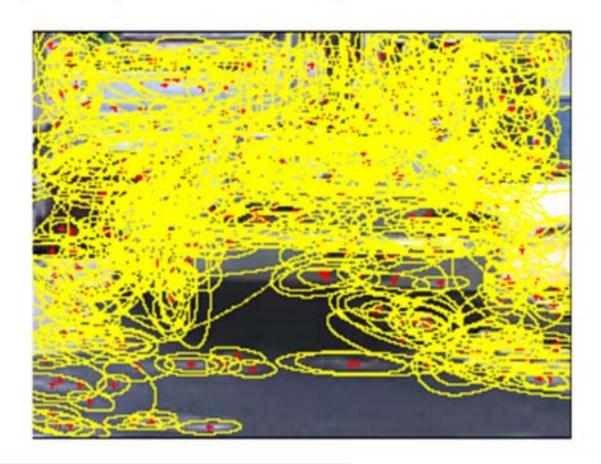


Multiple interest operators

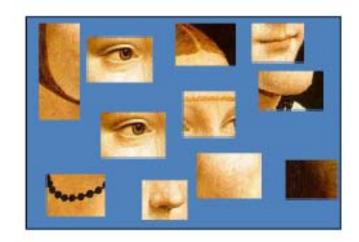
Dense, uniformly

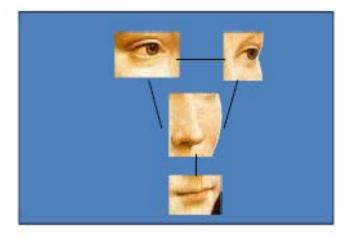
Randomly

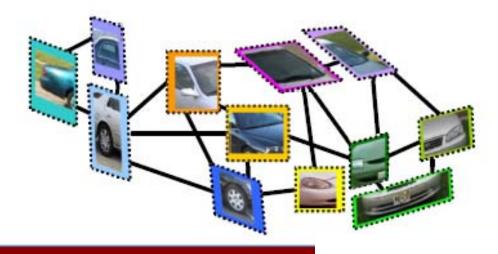
Building blocks: Choice of descriptors
 [SIFT, HOG, codewords....]



- Appearance only or location and appearance







- -Invariances
 - View point
 - Illumination
 - Occlusion
 - Scale
 - Deformation
 - Clutter
 - etc.

- To handle intra-class variability, it is convenient to describe an object categories using probabilistic models
- Object models: Generative vs Discriminative vs hybrid

Object categorization: the statistical viewpoint

• Bayes rule: $P(A|B) = \frac{P(B|A) P(A)}{P(B)}$.

p(zebra | image) p(no zebra | image)

Object categorization: the statistical viewpoint

• Bayes rule: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$. $\frac{p(zebra \mid image)}{p(no \ zebra \mid image)} = \frac{p(image \mid zebra)}{p(image \mid no \ zebra)} \cdot \frac{p(zebra)}{p(no \ zebra)}$ posterior ratio | likelihood ratio | prior ratio

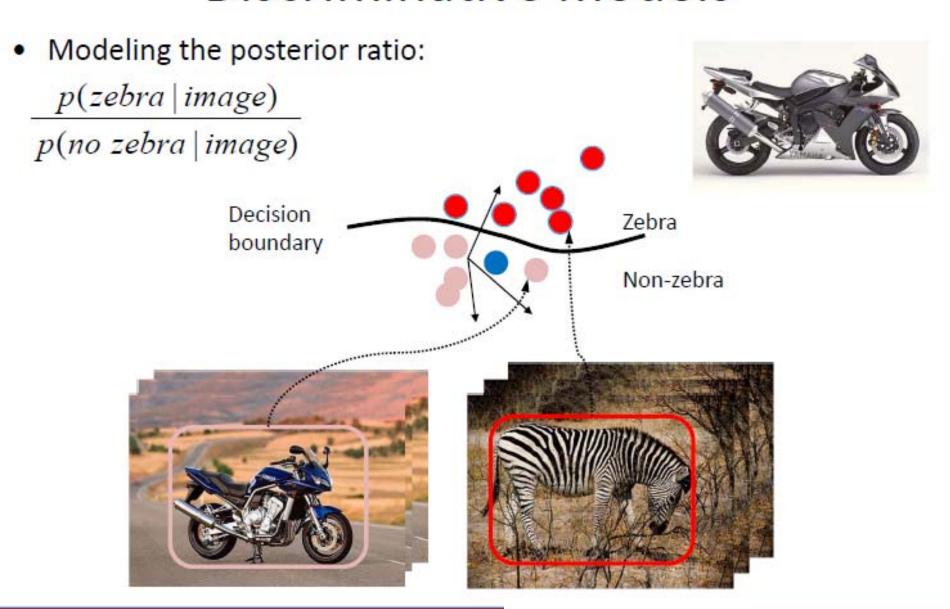
Object categorization: the statistical viewpoint

- Discriminative methods model posterior
- Generative methods model likelihood and prior

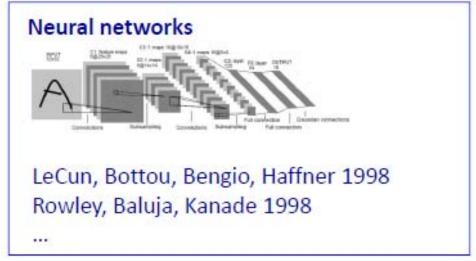
Bayes rule:

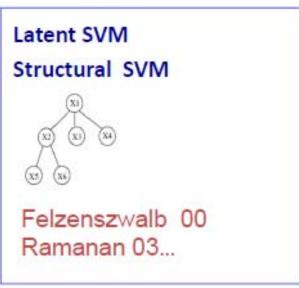
$$\frac{p(zebra \mid image)}{p(no \ zebra \mid image)} = \frac{p(image \mid zebra)}{p(image \mid no \ zebra)} \cdot \frac{p(zebra)}{p(no \ zebra)}$$
posterior ratio | likelihood ratio | prior ratio

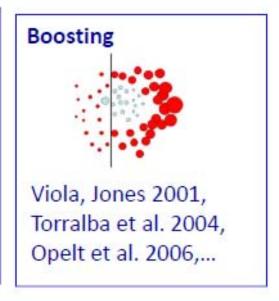
Discriminative models



Discriminative models



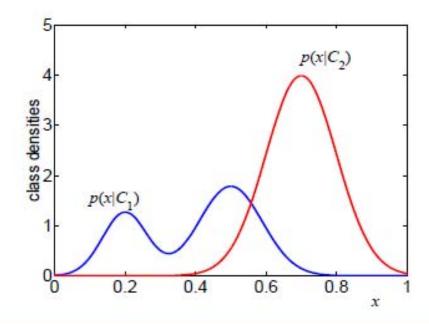




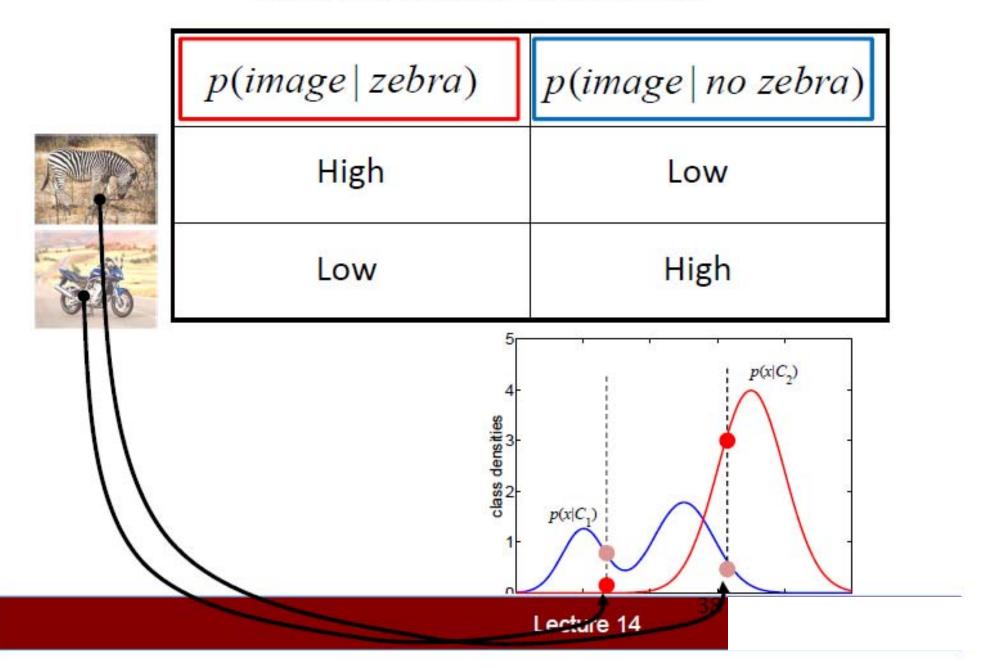
Source: Vittorio Ferrari, Kristen Grauman, Antonio Torralba

Generative models

Modeling the likelihood ratio:



Generative models



Generative models

- Naïve Bayes classifier
 - Csurka Bray, Dance & Fan, 2004
- Hierarchical Bayesian topic models (e.g. pLSA and LDA)
 - Object categorization: Sivic et al. 2005, Sudderth et al. 2005
 - Natural scene categorization: Fei-Fei et al. 2005
- 2D Part based models
 - Constellation models: Weber et al 2000; Fergus et al 200
 - Star models: ISM (Leibe et al 05)
- 3D part based models:
 - multi-aspects: Sun, et al, 2009

Basic issues

- Representation
 - How to represent an object category; which classification scheme?

- Learning
 - How to learn the classifier, given training data

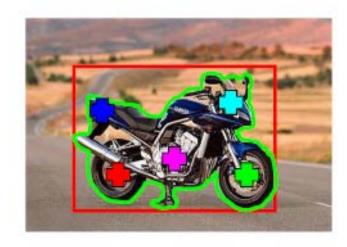
- Recognition
 - How the classifier is to be used on novel data

Learning

 Learning parameters: What are you maximizing?
 Likelihood (Gen.) or performances on train/validation set (Disc.)

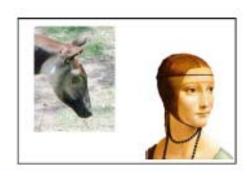
Learning

- Learning parameters: What are you maximizing?
 Likelihood (Gen.) or performances on train/validation set (Disc.)
- Level of supervision
 - Manual segmentation; bounding box; image labels; noisy labels
- Batch/incremental
- Priors



Learning

- Learning parameters: What are you maximizing?
 Likelihood (Gen.) or performances on train/validation set (Disc.)
- Level of supervision
 - Manual segmentation; bounding box; image labels; noisy labels
- Batch/incremental
- Priors
- Training images:
 - Issue of overfitting
 - Negative images for discriminative methods



Basic issues

- Representation
 - How to represent an object category; which classification scheme?

- Learning
 - How to learn the classifier, given training data

- Recognition
 - How the classifier is to be used on novel data

- Recognition task: classification, detection, etc..

- Recognition task
- Search strategy: Sliding Windows

Viola, Jones 2001,

- Simple
- Computational complexity (x,y, S, θ , N of classes)
 - BSW by Lampert et al 08
 - Also, Alexe, et al 10

- Recognition task
- Search strategy: Sliding Windows

Viola, Jones 2001,

- Simple
- Computational complexity (x,y, S, θ , N of classes)
 - BSW by Lampert et al 08
 - Also, Alexe, et al 10
- Localization
 - Objects are not boxes

- Recognition task
- Search strategy: Sliding Windows

Viola, Jones 2001,

- Simple
- Computational complexity (x,y, S, θ , N of classes)
 - BSW by Lampert et al 08
 - Also, Alexe, et al 10
- Localization
 - Objects are not boxes
 - Prone to false positive

Non max suppression:

Canny '86

Desai et al, 2009

- Recognition task
- Search strategy
- Attributes

- It has metal
- it is glossy
- has wheels
- •Farhadi et al 09
- Lampert et al 09
- Wang & Forsyth 09

- ·Savarese, 2007
- •Sun et al 2009
- Liebelt et al., '08, 10
- •Farhadi et al 09

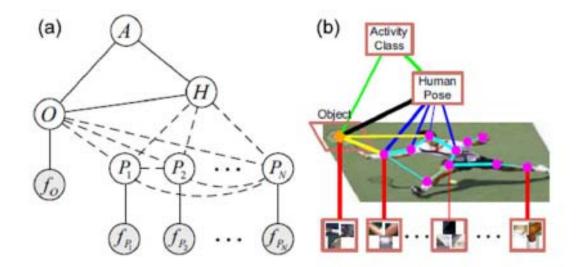
- Recognition task
- Search strategy
- Attributes
- Context

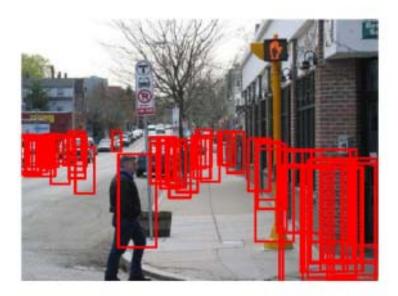
Semantic:

- •Torralba et al 03
- Rabinovich et al 07
- Gupta & Davis 08
- Heitz & Koller 08
- L-J Li et al 08
- Yao & Fei-Fei 10

Geometric

- · Hoiem, et al 06
- · Gould et al 09
- Bao, Sun, Savarese 10





Basic issues

- Representation
 - How to represent an object category; which classification scheme?

- Learning
 - How to learn the classifier, given training data

- Recognition
 - How the classifier is to be used on novel data

What have we learned today?

- Introduction to object recognition
 - Representation
 - Learning
 - Recognition

Next Time...

Bag of visual words approach

