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What we will learn today?

* Introduction to object recognition
— Representation
— Learning

— Recognition



What are the different visual recognition tasks?




Classification:
Does this image contain a building? [yes/no]




Classification:

Is this an beach?




Image Search
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Detection:
Does this image contain a car? [where?]




Detection:
Does this image contain a car? [where?]




Detection:
Which object does this image contain? [where?]




Detection:
Accurate localization (segmentation)




Detection: Estimating object semantic &

geometric attributes
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Object: Person, back;

1-2 meters away



Applications of Object Recognitions
and Image Retrieval

Security Assistive driving
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Categorization vs Single instance
recognition

Does this image contain the Chicago Macy building’s?
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Applications of Object Recognitions
and Image Retrieval

*Recognizing landmarks in
mobile platforms
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Activity or Event recognition
What are these people doing?




Visual Recognition

* Design algorithms that are capable to
— Classify images or videos
— Detect and localize objects

— Estimate semantic and geometrical
attributes

— Classify human activities and events

Why is this challenging?
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Challenges: viewpoint variation
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Challenges: illumination

image credit J. Koenderink



Challenges: scale



Challenges: deformation




Challenges:
occlusion

Magritte, 1957



Challenges: background clutter

Kilmeny Niland. 1995



Challenges: intra-class variation
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Basic issues

* Representation

— How to represent an object category; which
classification scheme?

* Learning

— How to learn the classifier, given training data

* Recognition

— How the classifier is to be used on novel data



Representation

- Building blocks: Sampling strategie
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Dense, uniformly

Multiple interest operators Randomly

Image credits: L. Fei-Fei, E. Nowak, 1. Sivic



Representation

- Building blocks: Choice of descriptors
[SIFT, HOG, codewords....]




Representation

— Appearance only or location and appearance




Representation

—|nvariances
* View point
* |[[lumination
* Occlusion
* Scale
* Deformation
 Clutter
ol < 68




Representation

— To handle intra-class variability, it is convenient to
describe an object categories using probabilistic
models

— Object models: Generative vs Discriminative vs hybrid



Object categorization:
the statistical viewpoint

p(zebra|image)

p(no zebra|image)

P(B|A) P(A)
P(B)

e Bayesrule: P(AB)=

p(zebra | image)

p(no zebra | image)




Object categorization:
the statistical viewpoint

p(zebra|image)

p(no zebralimage)

P(B|A) P(A)”

e Bayesrule: PAIB) = =

p(zebra|image) p(image| zebra) p(zebra)

p(no zebra |image)  p(image | no zebra) | p(no zebra)
M . AN A

posterior ratio likelihood ratio prior ratio



Object categorization:
the statistical viewpoint

e Discriminative methods model posterior

e Generative methods model likelihood and prior

e Bayes rule:

p(zebra|image) p(image| zebra) p(zebra)

p(no zebra |image)  p(image | no zebra) | p(no zebra)
M = A A

posterior ratio likelihood ratio prior ratio



Discriminative models

¢ Modeling the posterior ratio:

p(zebra|image)

p(no zebra |image)

Decision
boundary

Fei-Fei Li



Discriminat

ve models

Mearest neighbor
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105 examples

Berg, Berg, Malik 2005...

Shakhnarovich, Viola, Darrell 2003

MNeural networks
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LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998

Support Vector Machines

Guyon, Vapnik, Heisele,
Serre, Poggio...

Source: Vittorio Ferrari, Kristen Grauman, Antonio Torralba

Latent SVM
Structural SVM

Felzenszwalb 00
Ramanan 03...

Boosting

Viola, Jones 2001,
Torralba et al. 2004,
Opelt et al. 2006,...




Generative models
e Modeling the likelihood ratio:

p(image | zebra)

p(image | no zebra)
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Generative models

p(image| zebra) |p(imczrg€ | no zebra)

High Low

Low High
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Generative models

 Naive Bayes classifier
—  Csurka Bray, Dance & Fan, 2004

* Hierarchical Bayesian topic models (e.g. pLSA
and LDA)

—  Object categorization: Sivic et al. 2005, Sudderth et al. 2005
—  Natural scene categorization: Fei-Fei et al. 2005

* 2D Part based models

- Constellation models: Weber et al 2000; Fergus et al 200
- Star models: ISM (Leibe et al 05)

* 3D part based models:
- multi-aspects: Sun, et al, 2009



Basic issues

* Representation

— How to represent an object category; which
classification scheme?

* Learning

— How to learn the classifier, given training data

* Recognition

— How the classifier is to be used on novel data



Learning

* Learning parameters: What are you maximizing?
Likelihood (Gen.) or performances on
train/validation set (Disc.)



Learning

* Learning parameters: What are you maximizing?
Likelihood (Gen.) or performances on

train/validation set (Disc.)

e Level of supervision

* Manual segmentation; bounding box; image labels;
noisy labels

e Batch/incremental

® Priors




Learning

* Learning parameters: What are you maximizing?
Likelihood (Gen.) or performances on
train/validation set (Disc.)

e Level of supervision

* Manual segmentation; bounding box; image labels;
noisy labels

¢ Batch/incremental

e Priors

* Training images:
e|ssue of overfitting
eNegative images for
discriminative methods




Basic issues

* Representation

— How to represent an object category; which
classification scheme?

* Learning

— How to learn the classifier, given training data

* Recognition

— How the classifier is to be used on novel data



Recognition

— Recognition task: classification, detection, etc..




Recognition

— Search strategy: Sliding Windows
Viola, Jones 2001,

e Simple
e Computational complexity (x,y, S, 6, N of classes)

- ‘i‘;_ Hﬂ.,_,
- BSW by Lampert et al 08 T -

- Also, Alexe, et al 10



Recognition

— Search strategy: Sliding Windows _
iola, Jones 2001,

e Simple
e Computational complexity (x,y, S, 6, N of classes)

- BSW by Lampert et al 08

- Also, Alexe, et al 10
e Localization

* Objects are not boxes
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Recognition

— Search strategy: Sliding Windows _
iola, Jones 2001,

e Simple

e Computational complexity (x,y, S, 6, N of classes)

- BSW by Lampert et al 08

- Also, Alexe, et al 10
e Localization

* Objects are not boxes
* Prone to false positive

Non max suppression:
Canny '86

Desai et al , 2009



Recognition

*Savarese, 2007

*Sun et al 2009

* Liebelt et al., 08, 10
*Farhadi et al 09

— Attributes
Category: car
of AZimuth = 225%
8l Zenith = 30¢
- It has metal T~
_ it is glossy i
- has wheels

*Farhadi et al 09

* Lampert etal 09
*» Wang & Forsyth 09

Fei-Fei Li




Recognition
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Semantic:

*Torralba et al 03

* Rabinovich et al 07
* Gupta & Davis 08

* Heitz & Koller 08

= -] Lietal D8

* Yao & Fei-Fei 10

Geometric

* Hoiem, et al 06
*» Gould et al 09
* Bao, S5un, Savarese 10




Basic issues

* Representation

— How to represent an object category; which
classification scheme?

* Learning

— How to learn the classifier, given training data

* Recognition

— How the classifier is to be used on novel data



What have we learned today?

* Introduction to object recognition
— Representation
— Learning

— Recognition
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Next Time...

e Bag of visual words approach
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