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Scale Invariant Region Selection and
SIFT
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Class Objectives

e Scale invariant region selection
e Automatic scale selection

e Laplacian of Gradients (LoG) = Difference of
Gradients (DoG)

e SIFT as a local descriptor
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From Points to Regions...

The Harris and Hessian operators define interest points.
— Precise localization - —
— High repeatability

In order to compare those points, we need to compute a descriptor
over a region.

— How can we define such a region in a scale invariant manner?

l.e. how can we detect scale invariant interest regions?

Bastian Leibe

Source:
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Naive Approach: Exhaustive Search

* Multi-scale procedure
— Compare descriptors while varying the patch size
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Naive Approach: Exhaustive Search

* Multi-scale procedure

— Compare descriptors while varying the patch size
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Naive Approach: Exhaustive Search

* Multi-scale procedure

— Compare descriptors while varying the patch size
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Naive Approach: Exhaustive Search

* Comparing descriptors while varying the patch size

— Computationally inefficient

— Inefficient but possible for matching l|[|||| |||||
e.g. color

— Prohibitive for retrieval in large
databases [ |
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Automatic Scale Selection

» Solution:

— Design a function on the region, which is “scale invariant”

(the same for corresponding regions, even if they are at different
scales)

Example: average intensity. For corresponding regions (even of

different sizes) it will be the same.

— For a point in one image, we can consider it as a function of region size
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Automatic Scale Selection

Common approach:

— Take a local maximum of this function.

— Observation: region size for which the maximum is achieved should be

invariant to image scale.
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Automatic Scale Selection

* Function responses for increasing scale (scale signature)
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Automatic Scale Selection

* Function responses for increasing scale (scale signature)
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Automatic Scale Selection

* Function responses for increasing scale (scale signature)
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Automatic Scale Selection

* Function responses for increasing scale (scale signature)
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Automatic Scale Selection

* Function responses for increasing scale (scale signature)
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Automatic Scale Selection

* Function responses for increasing scale (scale signature)
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Automatic Scale Selection

* Normalize: Rescale to fixed size
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Slide credit: Tinne Tuytelaars
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What Is A Useful Signature Function?

* Laplacian-of-Gaussian = “blob” detector

Fei-Fei Li Lecture 11 - 62

Slide credit: Bastian Leibe
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Characteristic Scale

* We define the characteristic scale as the scale that produces
peak of Laplacian response

Characteristic scale

T. Lindeberg (1998). "Feature detection with automatic scale selection.” International Journal of
Computer Vision 30 (2): pp 77-116.

Slide credit: Svetlana Lazebnik
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Laplacian-of-Gaussian (LoG)

Interest points:

— Local maxima in scale
space of Laplacian-of-
Gaussian
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Laplacian-of-Gaussian (LoG)

Interest points:

— Local maxima in scale
space of Laplacian-of-
Gaussian

A i
Al e T
Al = i e
M T, T e

Slide adapted from



21

Laplacian-of-Gaussian (LoG)

Interest points:

— Local maxima in scale
space of Laplacian-of-
Gaussian
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Laplacian-of-Gaussian (LoG)

Interest points:

— Local maxima in scale
space of Laplacian-of-
Gaussian
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LoG Detector: Workflow

Slide credit; Svetlana Lazebnik
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LoG Detector: Workflow

sigma = 11.9912

Slide credit: Svetlana Lazebnik



Workflow

LoG Detector
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Technical Detail

* We can efficiently approximate the Laplacian with a
difference of Gaussians:

L=0%(G (x,9,0)+G (x.3.0)) .

(Laplacian) 41|

DoG = G(x,v,ko)—G(x,v,0)

(Difference of Gaussians)

Slide credit: Bastian Leibe
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Difference-of-Gaussian (DoG)

* Difference of Gaussians as approximation of the LoG

— This is used e.g. in Lowe’s SIFT pipeline
for feature detection.

* Advantages
— No need to compute 2" derivatives

— Gaussians are computed anyway, e.g.
in a Gaussian pyramid.

Slide credit; Bastian Leibe
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Key point localization with DoG

* Detect maxima of A
difference-of-Gaussian
(DoG) in scale space

. _ . Scale AT AAATS
* Then reject points with A A

low contrast (threshold)
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* Eliminate edge responses

Candidate keypoints:
list of (x,y,0)

Slide credit; David Lowe
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DoG — Efficient Computation

* Computation in Gaussian scale pyramid
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Slide adapted from Krystian Mikolajczyk
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Results: Lowe’s DoG

Slide credit; Bastian Leibe
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{a)

Example of Keypoint Detection

(a) 233x189 image
(b) 832 DoG extrema

(c) 729 left after peak
value threshold

(d) 536 left after testing
ratio of principle
curvatures (removing

edge responses)

Slide credit: David Lowe
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Local Descriptors

* We know how to detect points
* Next question:

How to describe them for matching?

1. Invariant
2. Distinctive

Slide credit: Kristen Grauman
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Slide credit: Svetlana Lazebnik, Matthew Brown

Rotation Invariant Descriptors

* Find local orientation
— Dominant direction of gradient H m
for the image patch

* Rotate patch according to this angle

— This puts the patches into a canonical orientation.




Orientation Normalization: Computation

[Lowe, SIFT, 1999]
¢ Compute orientation histogram

e Select dominant orientation
e Normalize: rotate to fixed orientation

Slide adapted from David Lowe



Feature Descriptors

Disadvantage of patches as descriptors:

— Small shifts can affect matching score a lot

Solution: histograms

Slide credit; Svetlana Lazebnik



Feature Descriptors: SIFT

* Scale Invariant Feature Transform

* Descriptor computation:
— Divide patch into 4x4 sub-patches: 16 cells

— Compute histogram of gradient orientations (8 reference angles) for all
pixels inside each sub-patch

— Resulting descriptor: 4x4x8 = 128 dimensions
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David G. Lowe. "Distinctive image features from scale-invariant keypoints.” JCV 60 (2), pp. 91-110, 2004.

Slide credit: Svetlana Lazebnik



Overview: SIFT

Extraordinarily robust matching technique

Can handle changes in viewpoint up to ~60 deg. out-of-plane rotation
Can handle significant changes in illumination
= Sometimes even day vs. night (below)

Fast and efficient—can run in real time

Lots of code available

http://people.csail. mit.edualbert/ladvpack/wiki/index.php/Enown _implementations of SIFT

Slide credit: Steve Seitz



Other Descriptors

e Gray-scale intensity

Projection onto l
PCAbasis |, |

II Cl III
e, |

e GIST
e CNN features
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e Objective

e Understand how to extract SIFT features and to
use related libraries

e Deadline
e Sep-29 (Thur.) (before 11:59pm)
KAIST
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Class Objectives were:

e Scale invariant region selection
e Automatic scale selection

e Laplacian of Gradients (LoG) = Difference of
Gradients (DoG)

e SIFT as a local descriptor
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Next Time...

e Object recognition
e Bag-of-Words (BoW) models
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Homework for Every Class

e Go over the next lecture slides

e Come up with one gquestion on what we have
discussed today
e 1 for typical questions (that were answered in the class)

e 2 for questions with thoughts or that surprised me

e \Write gquestions at least 4 times
e \Write a question about one out of every four classes

e Multiple questions in one time will be counted as one time

e Common guestions are compiled at the Q&A file
e Some of questions will be discussed in the class

e If you want to know the answer of your question,

ask me or TA on person
. & KAIST



