CS688: Web-Scale Image Retrieval
Intro to Object Recognition
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Class Objectives

e Introduction to object detection
e Representation (features)
e Learning
e Recognition

e Recently performed within deep neural net
with an end-to-end optimization
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What are the different visual recognition tasks?




Classification:
Does this image contain a building? [yes/no]




Classification
Is this an beach?
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Detection:
Does this image contain a car? [where?]




Detection:
Does this image contain a car? [where?]




Detection:
Which object does this image contain? [where?]




Detection:
Accurate localization (segmentation)




Detection: Estimating object semantic &
geometric attributes

Object: Building, 452 pose, | k
£ 8-10 meters away T~ %
It has bricks

Object: Person, back;
1-2 meters away

- |
Object: Police car, side view, 4-5 m away



Applications of Object Recognitions
and Image Retrieval

Security Assistive driving
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Categorization vs Single instance

recognition
Does this image contain the Chicago Macy building’s?




Categorization vs Single instance
recognition

Where is the crunchy nut?




Applications of Object Recognitions
and Image Retrieval

*Recognizing landmarks in
mobile platforms
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Activity or Event recognition




Visual Recognition

* Design algorithms that are capable to
— Classify images or videos
— Detect and localize objects

— Estimate semantic and geometrical
attributes

— Classify human activities and events

Why is this challenging?
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ImageNet Large Scale Visual
Recognition Challenge [IJCV 15]
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\é\éc])rd Net and ImageNet [CVPR

e ImageNet is based on WordNets

e ImageNet
o Contains 14 M images as 2014 . ...
o 21k synonym set, synset f;

o Each synset is populated about - ="~ .
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Basic issues

* Representation

— How to represent an object category; which
classification scheme?

* Learning

— How to learn the classifier, given training data

* Recognition

— How the classifier is to be used on novel data
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Representation

o Bmldmg blocks: sampling strategy

Multiple interest operators
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Randomly

Image credits: L. Fei-Fei, E. Nowak, J. Sivic

e Recently, features from convolution neural

nets
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Region Proposals

e Adopted commonly by many recognition
approaches

Identify different regions as candidates of objects
Selective Search, Uijlings et al.
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Convolutional Neural Network
(CNN)

e Features from some layers of CNNs
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System from Krizhevsky et al., NIPS 2012
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Representation

— Appearance only or location and appearance




Object categorization:
the statistical viewpoint

p(zebra |image)

p(no zebralimage)

P(B|A) P(A)
P(B)

e Bayesrule: P(A|B) =

p(zebra|image)

p(no zebra |image)




Object categorization:
the statistical viewpoint

p(zebra|image)

p(no zebralimage)

P(B|A) P(A)

e Bayesrule: P(A|B) = P(B)

p(zebra|image) p(image|zebra) p(zebra)

p(no zebra |image) - p(image | no zebra) | p(no zebra)
. S - A J

posterior ratio likelihood ratio prior ratio




Object categorization:
the statistical viewpoint

e Discriminative methods model posterior

 Generative methods model likelihood and prior

e Bayes rule:

p(zebra|image) p(image|zebra) p(zebra)

p(no zebra|image) p(image|no zebra) p(no zebra)
- A N AN J

posterior ratio likelihood ratio prior ratio




Discriminative models

¢ Modeling the posterior ratio:

p(zebra|image)

p(no zebra|image)

Decision
boundary
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Generative models
e Modeling the likelihood ratio:

p(image | zebra)

p(image | no zebra)
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Generative models
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Basic issues

* Representation

— How to represent an object category; which
classification scheme?

* Learning

— How to learn the classifier, given training data

* Recognition

— How the classifier is to be used on novel data




Learning

* Learning parameters: What are you maximizing?
Likelihood (Gen.) or performances on
train/validation set (Disc.)




Learning

* Learning parameters: What are you maximizing?
Likelihood (Gen.) or performances on
train/validation set (Disc.)

e Level of supervision

* Manual segmentation; bounding box; image labels;
noisy labels

e Batch/incremental

® Priors
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Scribble-Supervised Convolutional Networks
for Semantic Segmentation [CVPR 16]

e Deep learning requires lots of data, but
how can we prepare such data?

(a) image (b) mask annotation (c) scribble annotation

« Allow users just a few strokes, and learn
segmentation from them

o . | ?
How about image/video search” KAIST



Basic issues

* Representation

— How to represent an object category; which
classification scheme?

* Learning

— How to learn the classifier, given training data

* Recognition

— How the classifier is to be used on novel data




Recognition

— Recognition task: classification, detection, etc..




Recognition

— Search strategy: Sliding Windows

Viola, Jones 2001,

e Simple

- BSW by Lampert et al 08
- Also, Alexe, et al 10




Recognition

— Search strategy: Sliding Windows ,
Viola, Jones 2001,

e Simple
e Computational complexity (x,y, S, 6, N of classes)
N R

- BSW by Lampert et al 08
- Also, Alexe, et al 10
¢ Localization
* Objects are not boxes




Recognition

— Search strategy: Sliding Windows ,
Viola, Jones 2001,

e Simple

* Computational complexity (x,y, S, 8, N of classes)

- BSW by Lampert et al 08
- Also, Alexe, et al 10
¢ Localization
* Objects are not boxes
* Prone to false positive

Non max suppression:
Canny ‘86

Desai et al , 2009




Recognition

*Savarese, 2007

*Sun et al 2009

* Liebelt et al., '08, 10
*Farhadi et al 09

— Attributes

Category: car
{ Azimuth = 2252
| Zenith = 302

- It has metal
- it is glossy
- has wheels

*Farhadi et al 09
* Lampert et al 09
* Wang & Forsyth 09
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Recognition
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— Context DEDREND

Semantic:

*Torralba et al 03

* Rabinovich et al 07
* Gupta & Davis 08

*» Heitz & Koller 08

*| -] Lietal 08

* Yao & Fei-Fei 10

Geometric

* Hoiem, et al 06
* Gould et 3l 09
* Bao, Sun, Savarese 10
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Class Objectives were:

e Introduction to object detection
e Representation (features)
e Learning
e Recognition

e Recently performed within deep neural net
with an end-to-end optimization
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Next Time and Homework

e Bag of visual words approach

e Go over the next lecture slides

e Come up with one question on what we have
discussed today

e 1 for typical questions (that were answered in the class)
e 2 for questions with thoughts or that surprised me

e Write questions at least 4 times
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