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Class Objectives

e Study neural nets, especially, convolution
neural nets (CNNS)

e See Its applications to computer vision
problems and image search
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High-Level Messages

e Deep neural nets provide low-level and
high-level features

e We can use those features for image search

e Achieve the best results In many computer
vision related problems
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High-Level Messages

e Perform the end-to-end optimization w/
lots of training data

e Aims not only features, but the accuracy of any
end-to-end systems including image search
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Deep Learning for Vision

Adam Coates

Stanford University
(Visiting Scholar: Indiana University, Bloomington)



What do we want ML to do?

* Given image, predict complex high-level patterns:

Object recognition Detection Segmentation

[Martin et al., 2001]




How I1s ML done?

* Machine learning often uses hand-designed feature
extraction.

: Machine Learning
E « ”
Feature Extraction Aiseriii Cat ?

Prior Knowledge,
Experience




“Deep Learning”

* Deep Learning
* Train multiple layers of features from data.
* Try to discover useful representations

More abstract representation

Low-level Mid-level High-level

Classifier “ ”
Features Features Features Cat ?




“Deep Learning”

* Why do we want “deep learning”?
— Some decisions require many stages of processing.

— We already hand-engineer “layers” of
representation.

— Algorithms scale well with data and computing
powetr.

* |In practice, one of the most consistently successful
ways to get good results in ML.



Have we been here before?

» Yes: Basic ideas common to past ML and
neural networks research.

> No.

— Faster computers; more data.

— Better optimizers; better initialization schemes.

* “Unsupervised pre-training” trick
[Hinton et al. 2006; Bengio et al. 2006]

— Lots of empirical evidence about what works.

* Made useful by ability to “mix and match” components.
[See, e.g., Jarrett et al., ICCV 2009]



Real impact

DL systems are high performers in many tasks
over many domains.
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[E.g., Krizhevsky et al., 2012] [E.g., Heigold et al., 2013] [E.g., Socher et al., ICML 2011;
Collobert & Weston, ICML 2008
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Supervised Learning

* Given labeled training examples:
xX={z®y:i=1,...,m}

* Forinstance: x) = vector of pixel intensities.
yli) = object class ID.

e Goal: find f(x) to predict y from x on training data.
— Hopefully: learned predictor works on “test” data.
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Logistic Regression

* Simple binary classification algorithm

— Start with a function of the form:l

f(z;0)=0(8'z) = 1+ exp(—0 " x) 1

— Interpretation: f(x) is probability thaty =1//

— Find choice of @ that minimizes objective:

cost

Py® = 1|g®

L NC ) 0
L(6) ;1{9 1} log(f(z*;0))+ P(y(i) _ le(é)

k 1{y® = 0} log(1 — f(z?;9))

0
=

| I
+4ho(z)] -1 From Ng's slide




Optimization

e How do we tune @ to minimize £(6)?

* One algorithm: gradient descent
— Compute gradient:

Vo L(6) = Zm(i) (YD — f(zD;9))
— Follow gradient “downhill”:
0 := 0 — nVeL(0)

e Stochastic Gradient Descent (SGD): take step
using gradient from only small batch of examples.

— Scales to larger datasets. [Bottou & LeCun, 2005]



Is this enough?

* Loss is convex =2 we always find minimum.

* Works for simple problems:

— Certain pixels are highly informative --- e.g., center
pixel.

o000l 1 /1
* Fails for even slightly harder problems.
— |s this a coffee mug?




Why iIs vision so hard?

“Coffee Mug”

!

Pixel Intensity

Pixel intensity is a very poor representation.



Why iIs vision so hard?

pixel 2
pixel 1

!

[72 160] Pixel Intensity

pixel 2

N

—+ pixel 1

+ Coffee Mug

= Not Coffee Mug




Why iIs vision so hard?

Is this a Coffee Mug?

pixel 2 pixel 2
A _ M -
+ _ i + _
+ + + +
+ R Learning Algorithm + B S
> pixel 1 > pixel 1

4+ Coffee Mug

= Not Coffee Mug




Features

handle? cylinder?
Is this a Coffee Mug?
cylinder? eylinder?
N\ + + A + +

- + _ A

+ I 4
_ + Learning Algorithm T +

> handle? > handle?

+ Coffee Mug

= Not Coffee Mug




Features

* Huge investment devoted to building application-
specific feature representations.

Object Bank [Li et al., 2010] Super-pixels
o s [Gould et al., 2008; Ren & Malik, 2003]
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Extension to neural networks

SUPERVISED
DEEP LEARNING



Basic idea

* We saw how to do supervised learning when
the “features” ¢(x) are fixed.

— Let’s extend to case where features are given by
tunable functions with their own parameters.

Py = 1|z) = f(z;0,W) = 0(8' o(Wx))

Inputs are “features”---one
Outer part of function is same feature for each row of W:
as logistic regression. 0'('!01:13)

o(wsx)

| o(wkr)



Basic idea

* To do supervised learning for two-class

classification, minimize:

LO,W) =

multiple stages (“layers”,

Zl{y(”) = 1}log(f(=;0,W))+

1{y*) = 0}log(1 — f(z™*); 6, W))
e Same as logistic regression, but now f(x) has

”

modules”):

f(z;0,W) =0(0"0(Wzx))

Tr —>

oc(Wt)

> h

- o(07h)

— f

Intermediate representation (“features”)

Prediction for P(y = 1|x)



Neural network

* This model is a sigmoid “neural network”:
L6, W)

“Neuron” \
Flow of computation.
“Forward prop”
Wi




Neural network
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Back-propagation

* Minimize:
LO,W) = Zl{y(”) = 1}log(f(z®; 6, W)+

1{y® = 0} log(1 — f(z; 0, W))
* To minimize £(9,w)we need gradients:
VoLl (6,W) and Vw L(6, W)
— Then use gradient descent algorithm as before.

* Formula for Ve£(6,W)can be found by hand
(same as before); but what about W?

— Beyond the scope of this course



Back-propagation

e Can re-apply chain rule to get gradients for all
intermediate values and parameters.

€T =

. h—s

H —

o(0"h)

W o(Wx)
VL —
T J
Vwil — "

<—vh£<—

Veﬁ Da—

Js

- f 5(9, W)

— VL

“Backward” modules for each forward stage.



Training Procedure

e Collect labeled training data
— For SGD: Randomly shuffle after each epoch!

X={z® y:i=1,...,m}

* For a batch of examples:
— Compute gradient w.r.t. all parameters in network.
Ag :=V9£(9, W)
— Make a small update to parameters.
B :=0 — nglAg
W =W — TijW
— Repeat until convergence.



Training Procedure

* Historically, this has not worked so easily.
— Non-convex: Local minima; convergence criteria.

— Optimization becomes difficult with many stages.
* “Vanishing gradient problem”

— Hard to diagnose and debug malfunctions.

 Many things turn out to matter:
— Choice of nonlinearities.
— Initialization of parameters.
— Optimizer parameters: step size, schedule.



Nonlinearities

 Choice of functions inside network matters.
— Sigmoid function turns out to be difficult.
— Some other choices often used:

tanh(z) abs(z) Relu(z) = max{0, z}

1 v 11—+
/ >
-1
“Rectified Linear Unit”
- Increasingly popular.

[Nair & Hinton, 2010]




INnitialization

e Usually small random values.

— Try to choose so that typical input to a neuron avoids saturating / non-
differentiable areas.

1“/—
/ >

»

— Occasionally inspect units for saturation / blowup.

— Larger values may give faster convergence, but worse models!

* Initialization schemes for particular units:
— tanh units: Unif[-r, r]; sigmoid: Unif[-4r, 4r].

r = +/6/(fan-in + fan-out)
See [Glorot et al., AISTATS 2010]




Application

SUPERVISED DL FOR
VISION



Working with images

* Major factors:

— Want to have “selective” features and “invariant”
features.

— Try to exploit knowledge of images to accelerate
training or improve performance.

* Generally try to avoid wiring detailed visual
knowledge into system --- prefer to learn.



Local connectivity

* Neural network view of single neuron:

Extremely large number of connections.
‘ —>More parameters to train.

—>Higher computational expense.
// \ —>Turn out not to be helpful in practice.
N
DS X




Local connectivity

* Reduce parameters with local connections.
— Weight vector is a spatially localized “filter”.




Local connectivity

 Sometimes think of neurons as viewing small
adjacent windows.
— Specify connectivity by the size (“receptive field” size)
and spacing (“step” or “stride”) of windows.

* Typical RF size =5 to 20
* Typical step size = 1 pixel up to RF size.

h — Wz Rows of W are sparse.
Only weights connecting to inputs

in the window are non-zero.



Local connectivity

e Spatial organization of filters means output features
can also be organized like an image.

— X,Y dimensions correspond to X,Y position of neuron
window.

— “Channels” are different features extracted from same
spatial location. (Also called “feature maps”, or “maps”.)

X spatial location

1-dimensional example: , '
“Channel” or “map” index




Local connectivity

» We can treat output of a layer like an image and re-use the

same tricks.

1-dimensional example:

X spatial location

>

900

VXN

“Channel” or “map” index



Weight-Tying

* Even with local connections, may still have too
many weights.
— Trick: constrain some weights to be equal if we

know that some parts of input should learn same
kinds of features.

— Images tend to be “stationary”: different patches
tend to have similar low-level structure.



Weight-Tying or
Convolutional Network

» Reduce parameters by making them equal.

X spatial location

o000
JAYA'AY

1D input

Each unique filter is spatially convolved with the input to

produce responses for each map. [LeCun et al., 1989; LeCun
et al., 2004]




Pooling

* Functional layers designed to represent invariant features.

e Usually locally connected with specific nonlinearities.
— Combined with convolution, corresponds to hard-wired

translation invariance.

e Usually fix weights to local box or gaussian filter.
— Easy to represent max-, average-, or 2-norm pooling.

h = (Wz%)/e

O

O
OO

[Scherer et al., ICANN 2010]
[Boureau et al., ICML 2010]




Contrast Normalization

 Empirically useful to soft-normalize magnitude of
groups of neurons.

— Sometimes we subtract out the local mean first.

h— A
VW22 + ¢
QKO‘Q‘
O

O _O

O
C

[Jarrett et al., ICCV 2009]




Application: Image-Net

e System from Krizhevsky et al., NIPS 2012:

— Convolutional neural network.

— Max-pooling.

— Rectified linear units (ReLu).
— Contrast normalization.

— Local connectivity.
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Application: Image-Net

. Top result in LSVRC 2012: "‘85%, Top-5 accuracy.
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More applications

* Segmentation: predict classes of pixels / super-pixels.

Farabet et al., ICML 2012 >

* Detection: combine classifiers with inding-windoW architecture.
— Economical when used with convolutional nets.

Pierre Sermanet (2010) 2>

* Robotic grasping. [Lenz et al., RSS 2013]




UNSUPERVISED DL



Representation Learning

* Insupervised learning, train “features” to
accomplish top-level objective.

But what if we have too
few labels to train all
these parameters?




Representation Learning

* Can we train the “representation” without using
top-down supervision?

Learn a “good”
representation directly?




Representation Learning

 What makes a good representation?

— Distributed: roughly, K features represents more than
K types of patterns.

* E.g., K binary features that can vary independently to
represent 2K patterns.

— Invariant: robust to local changes of input; more
abstract.
* E.g., pooled edge features: detect edge at several locations.

— Disentangling factors: put separate concepts (e.g.,
color, edge orientation) in separate features.

Bengio, Courville, and Vincent (2012)
.



-encoder

Sparse auto

* Train two-layer neural network by minimizing:

minimize Z ||W2h(W1:c(i)) — m(i)H% + )\||h(W1$("'))||1

Wl sW2

i

ReLu(z)

h(z)

« Remove “decoder” and use learned features (h).
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What features are learned?

* Applied to image patches, well-known result:

BTN E SRNEE
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Sparse auto-encoder Sparse coding Sparse RBM
[Ranzato et al., 2007] [Olshausen & Field, 1996] [Lee et al., 2007]
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Summary

* Supervised deep-learning

— Practical and highly successful in practice. A
general-purpose extension to existing ML.

— Optimization, initialization, architecture matter!

* Unsupervised deep-learning
— Pre-training often useful in practice.

— Difficult to train many layers of features without
labels.



Resources

Tutorials

Stanford Deep Learning tutorial:
http://ufldl.stanford.edu/wiki

Deep Learning tutorials list:
http://deeplearning.net/tutorials

IPAM DL/UFL Summer School:
http://www.ipam.ucla.edu/programs/gss2012/

ICML 2012 Representation Learning Tutorial

http://www.iro.umontreal.ca/~bengioy/talks/deep-learning-
tutorial-2012.html
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http://www.stanford.edu/~acoates/bmvc2013refs.pdf

Overviews:

Yoshua Bengio,
“Practical Recommendations for Gradient-Based Training of Deep Architectures’

)

Yoshua Bengio & Yann LeCun,
“Scaling Learning Algorithms towards Al”

Yoshua Bengio, Aaron Courville & Pascal Vincent,
“Representation Learning: A Review and New Perspectives”

Software:
Theano GPU library: http://deeplearning.net/software/theano
SPAMS toolkit: http://spams-devel.gforge.inria.fr/




High-Level Messages

* Deep neural nets provide low-level and high-
level features
— We can use those features for image search

* Achieve the best results in many computer

vicinn related nrohlemc
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58

PA3

e Apply binary code embedding and inverted
Index to PA2
e Spherical hashing for binary code
embedding

® K-means clustering or product
quantization (PQ) for inverted index

KAIST



