Hashing Techniques

윤성의 (Sung-Eui Yoon)

Associate Professor KAIST

http://sglab.kaist.ac.kr

Student Presentation Guidelines

- Good summary, not full detail, of the paper
 - Talk about motivations of the work
 - Give a broad background on the related work
 - Explain main idea and results of the paper
 - Discuss strengths and weaknesses of the method

High-Level Ideas

- Deliver most important ideas and results
 - Do not talk about minor details
 - Give enough background instead
- Deeper understanding on a paper is required
 - Go over at least two related papers and explain them in a few slides
- Spend most time to figure out the most important things and prepare good slides for them

Overall Structure

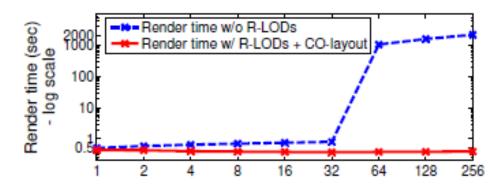
- Prepare an overview slide
 - Talk about most important things and connect them well

Be Honest

- Do not skip important ideas that you don't know
 - Explain as much as you know and mention that you don't understand some parts
- If you get questions you don't know good answers, just say it
- In the end, you need to explain them before the semester ends

Result Presentation

- Give full experiment settings and present data with the related information
 - What does the x-axis mean in the below image?



- After showing the data, give a message that we can pull of the data
- Show images/videos, if there are

Utilizing Existing Resources

- Use author's slides, codes, and video, if they exist
- Give proper credits/ack. or citations
 - Without them, you are cheating!

Deliver Main Ideas of the Paper

- Identify main ideas/contributions of the paper and deliver them
- If there are prior techniques that you need to understand, study those prior techniques and explain them
 - For example, A paper utilizes B's technique in its main idea. In this case, you need to explain B to explain A well.

Audience feedback form

Date: Talk title: Speaker:

1. Was the talk well organized and well prepared?5: Excellent4: good3: okay2: less than average1: poor

2. Was the talk comprehensible? How well were important concepts covered?

5: Excellent 4: good 3: okay 2: less than average 1: poor

Any comments to the speaker

Prepare Quiz

- Review most important concepts of your talk
- Prepare a few (three or four) multiplechoices questions
- Example: What is the biased algorithm?
 - A: Given N samples, the expected mean of the estimator is I
 - B: Given N samples, the exp. Mean of the estimator is I + e
 - C: Given N samples, the exp. Mean of the estimator is I + e, where e goes to zeor, as N goes to infinite

Class Objectives

- Understand the basic hashing techniques based on hyperplanes
- Get to know a recent one based on hyperspheres

Review of Basic Image Search

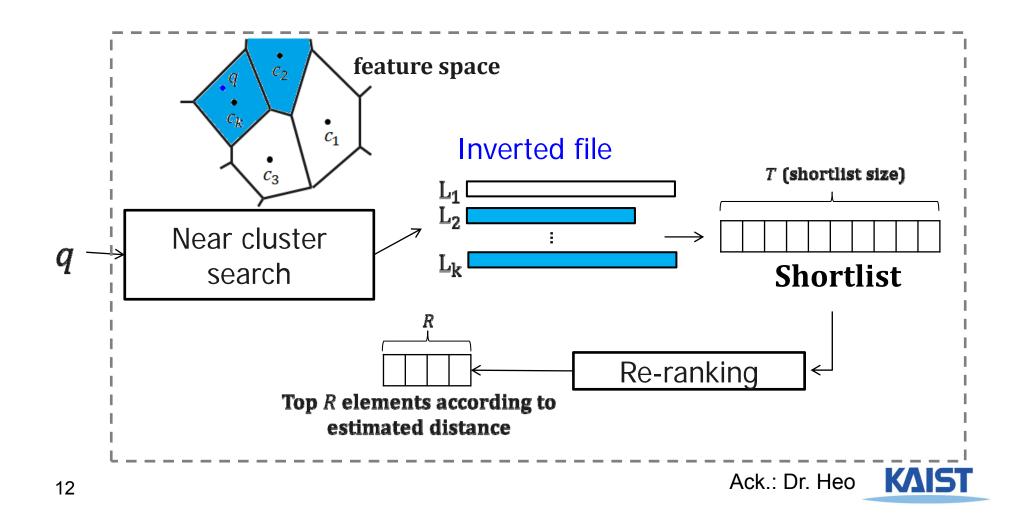


Image Search

Finding visually similar images

Image Descriptor

High dimensional point

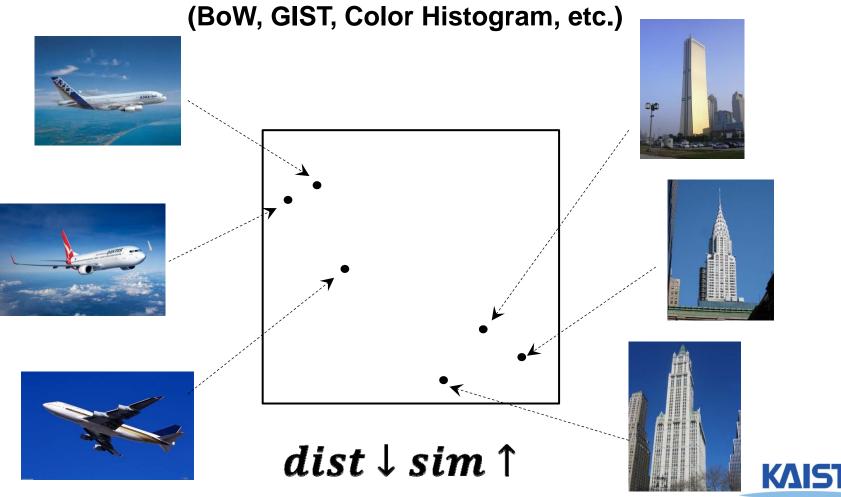
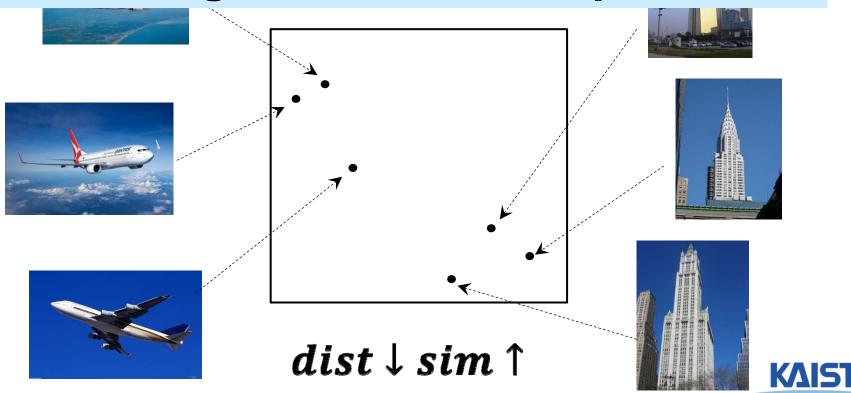


Image Descriptor

High dimensional point Nearest neighbor search (NNS) in high dimensional space

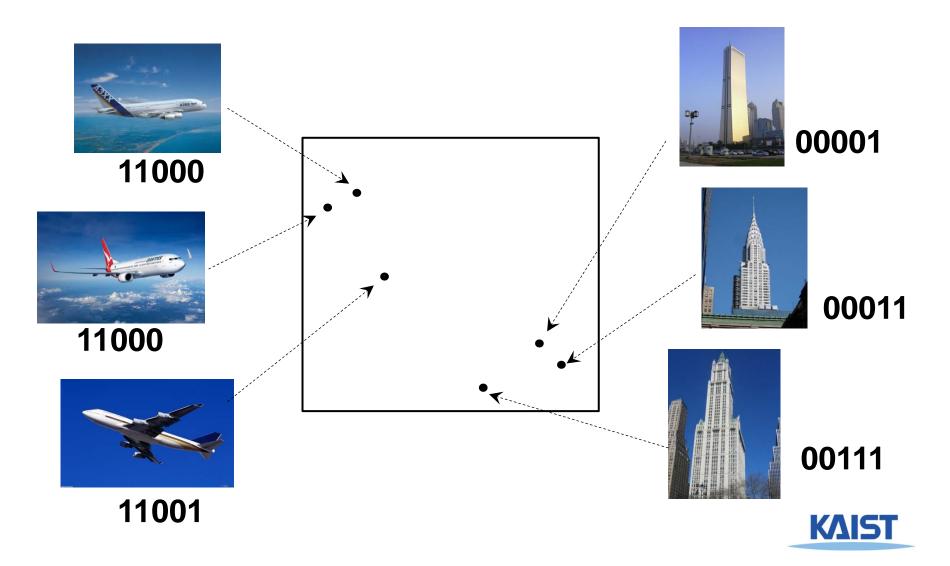


Challenge

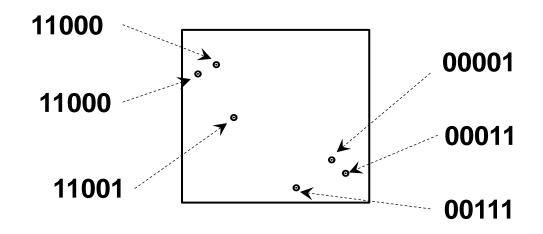
	BoW	GIST
Dimensions	1000+	300+
1 image	4 KB+	1.2 KB+
1B images	3 TB+	1 TB+

 $\frac{144 \text{ GB memory}}{1 \text{ billion images}} \approx \frac{128 \text{ bits}}{1 \text{ image}}$

Binary Code

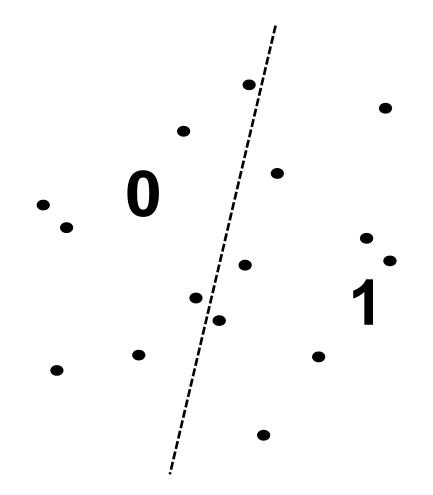


Binary Code

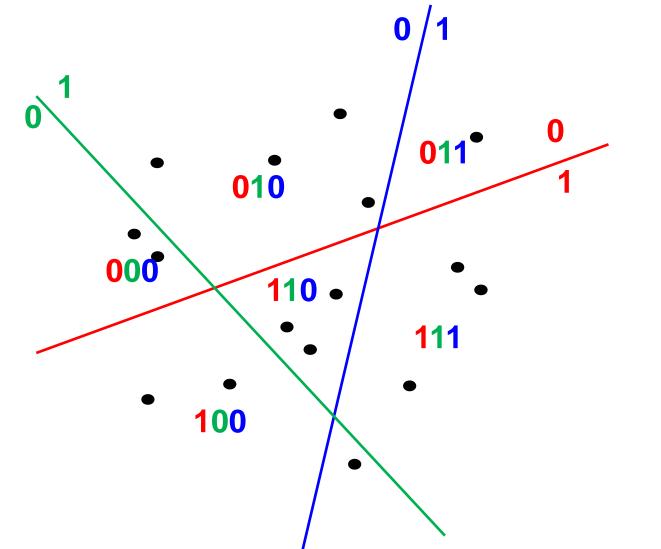


- * Benefits
 - Compression
 - Very fast distance computation (Hamming Distance, XOR)

Hyper-Plane based Binary Coding



Hyper-Plane based Binary Coding

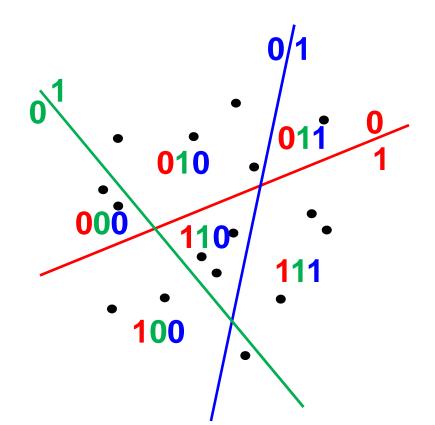


Distance between Two Points

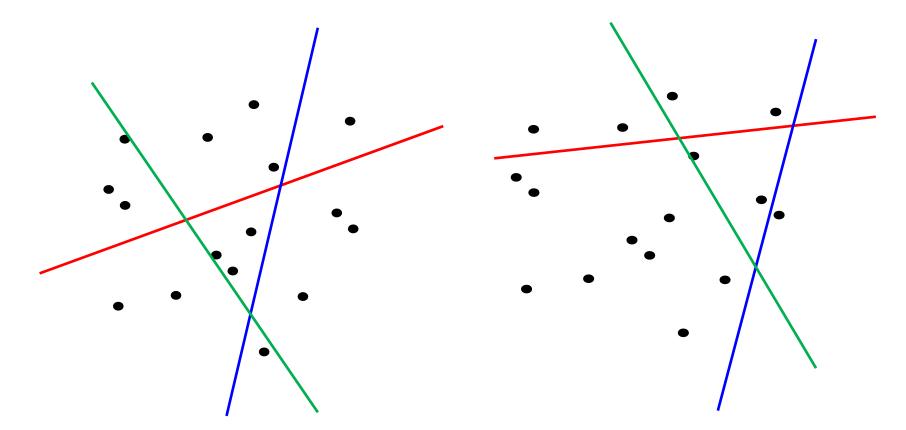
- Measured by bit differences, known as Hamming distance
- Efficiently computed by XOR bit operations

$$d_{hd}(b_i, b_j) =$$

$$|b_i\oplus b_j|$$



Good and Bad Hyper-Planes



Previous work focused on how to determine good hyper-planes

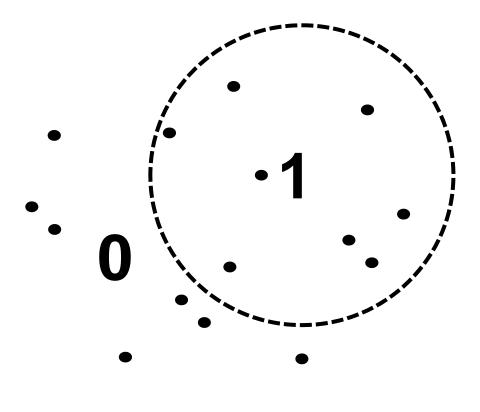
Components of Spherical Hashing

- Spherical hashing
- Hyper-sphere setting strategy
- Spherical Hamming distance

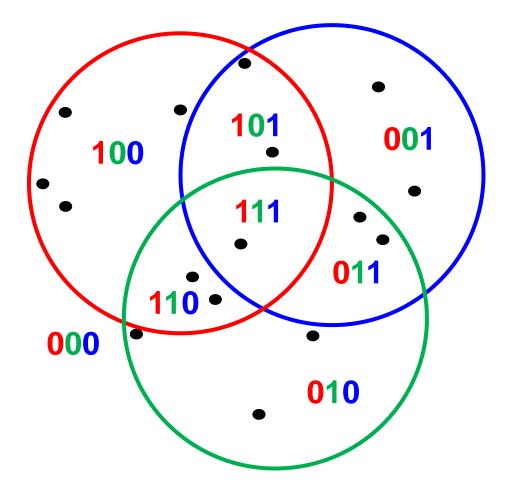
Components of Spherical Hashing

- Spherical hashing
- Hyper-sphere setting strategy
- Spherical Hamming distance

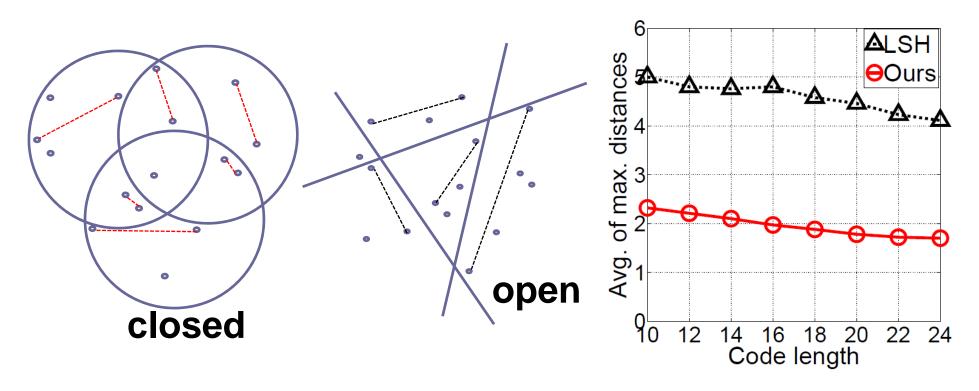
Spherical Hashing [Heo et al., CVPR 12]



Spherical Hashing [Heo et al., CVPR 12]



Hyper-Sphere vs Hyper-Plane



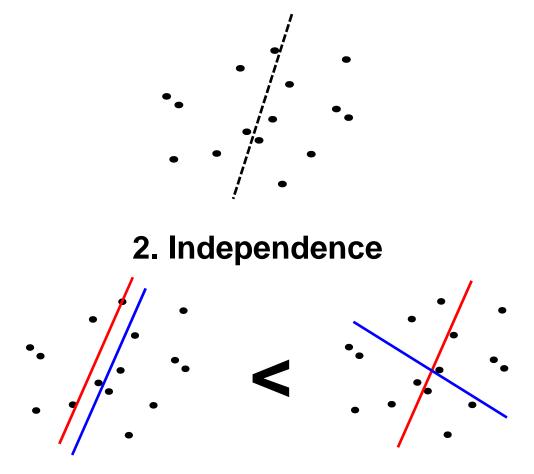
Average of maximum distances within a partition: - Hyper-spheres gives tighter bound!

Components of Spherical Hashing

- Spherical hashing
- Hyper-sphere setting strategy
- Spherical Hamming distance

Good Binary Coding [Yeiss 2008, He 2011]

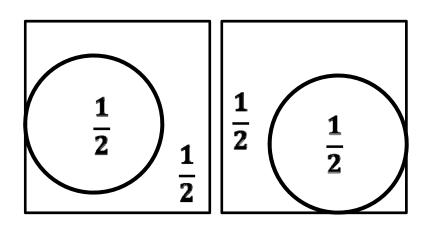
1. Balanced partitioning

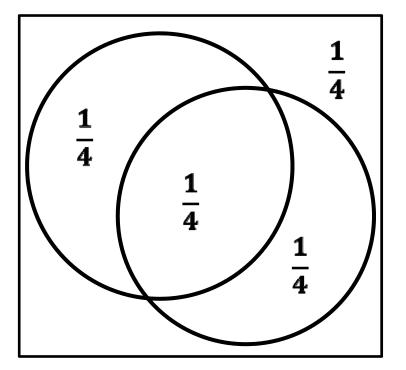


Intuition of Hyper-Sphere Setting

1. Balance

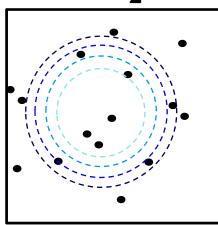
2. Independence





Hyper-Sphere Setting Process

- 1. Balance
- by controlling radius for $n(S) = \frac{N}{2}$



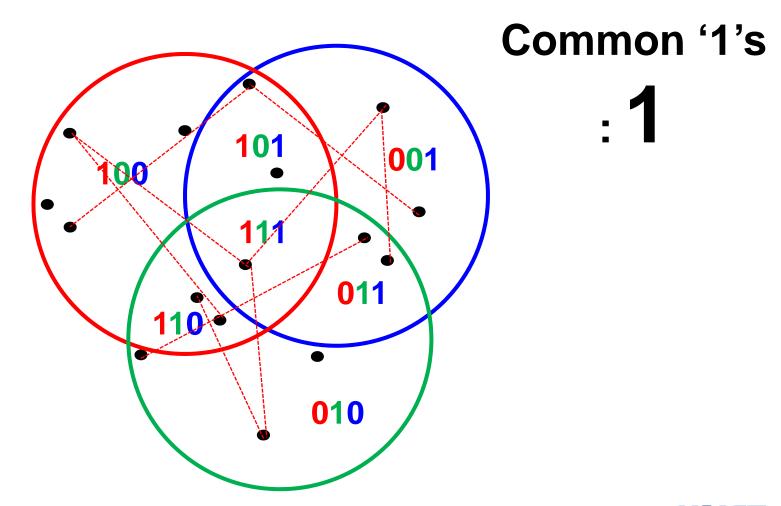
2. Independence - by moving two hyperspheres for $n(S_1 \cap S_2) = \frac{N}{4}$

Iteratively repeat step 1, 2 until convergence.

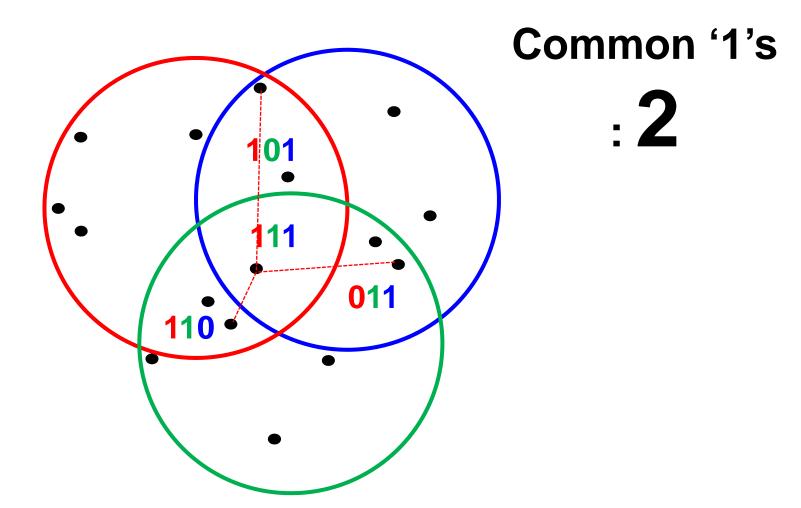
Components of Spherical Hashing

- Spherical hashing
- Hyper-sphere setting strategy
- Spherical Hamming distance

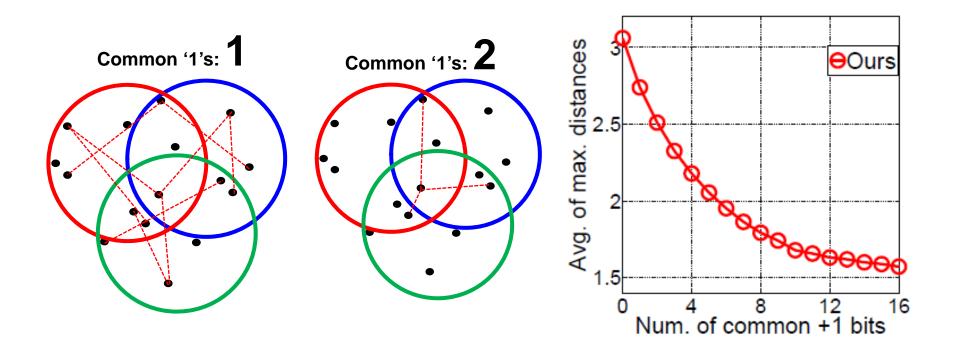
Max Distance and Common '1'



Max Distance and Common '1'



Max Distance and Common '1'



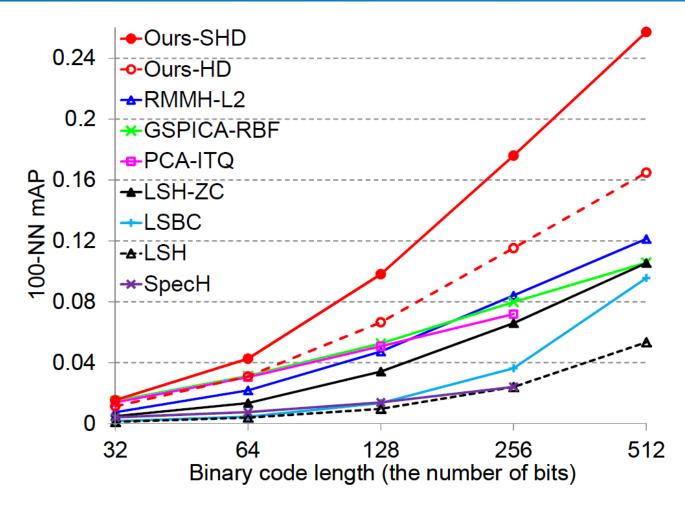
Average of maximum distances between two partitions: decreases as number of common '1'

Spherical Hamming Distance (SHD)

$$d_{shd}(b_i, b_j) = \frac{|b_i \oplus b_j|}{|b_i \wedge b_j|}$$

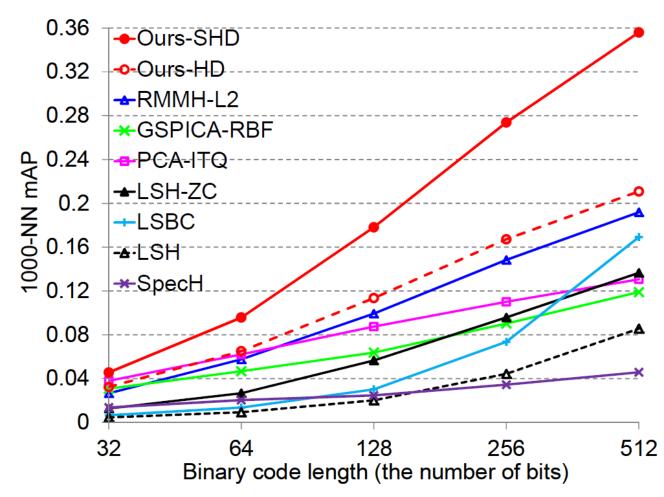
SHD: Hamming Distance divided by the number of common '1's.

Results



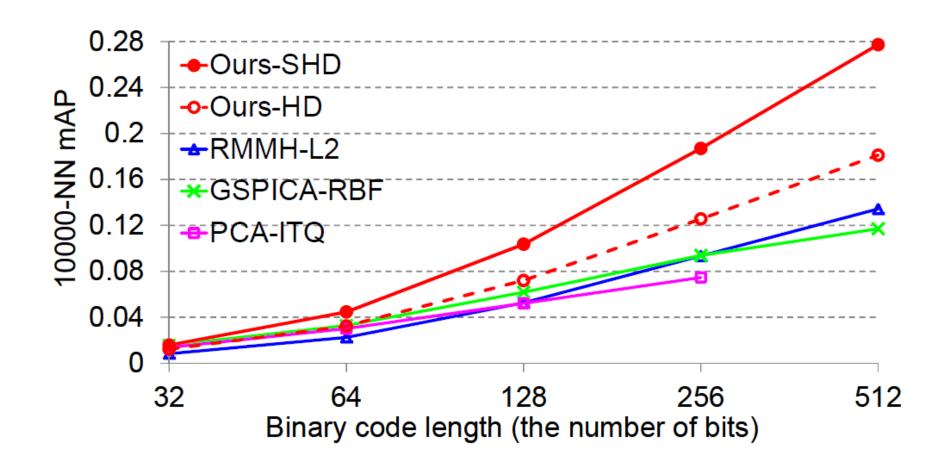
384 dimensional 1 million GIST descriptors

Results



960 dimensional 1 million GIST descriptors

Results

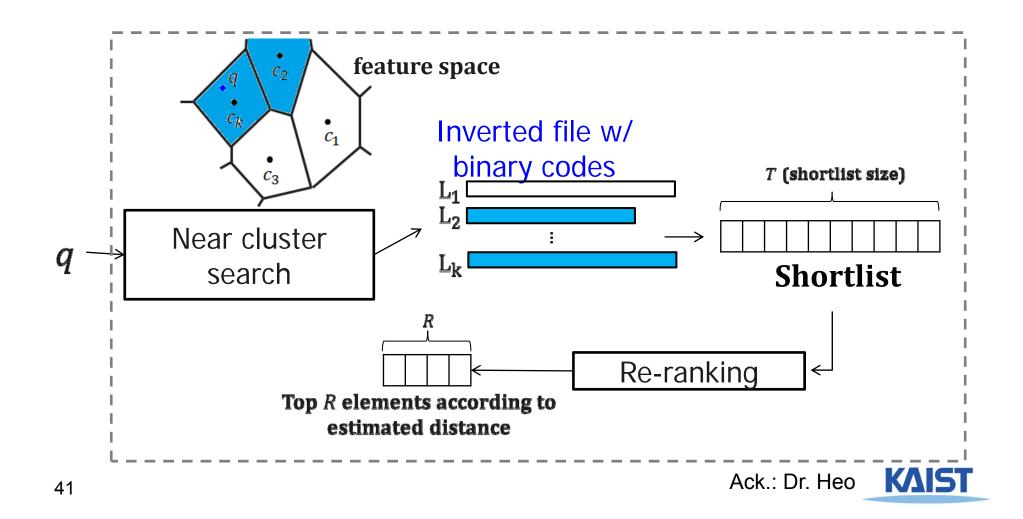


384 dimensional 75 million GIST descriptors

Summary

- The need of binary code embedding
- Spherical binary code embedding
 - Uses spherical hashing for tighter bounds
 - Iterative process to achieve balance and independence
 - Spherical Hamming distance

Summary

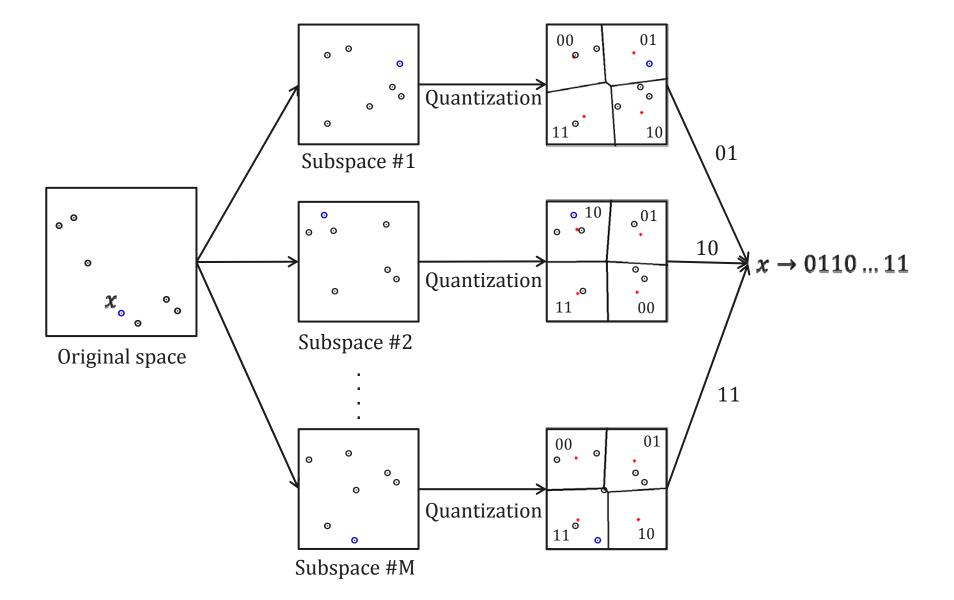


Distance Encoded Product Quantization

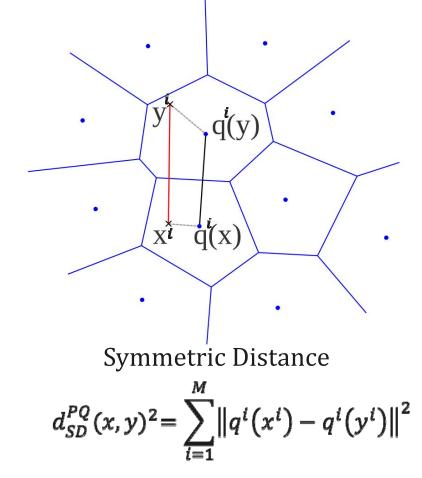
Jae-Pil Heo, Zhe Lin, and Sung-Eui Yoon

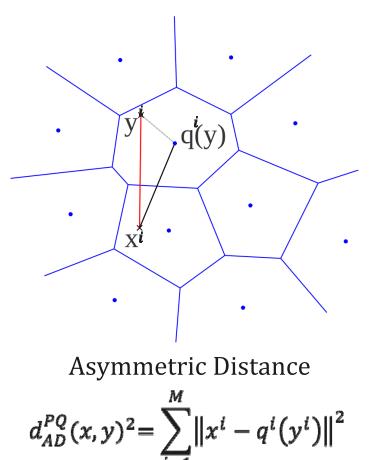
CVPR 2014

PQ: Product Quantization [Jegou et al., TPAMI 2011]



Distance Computation in PQ





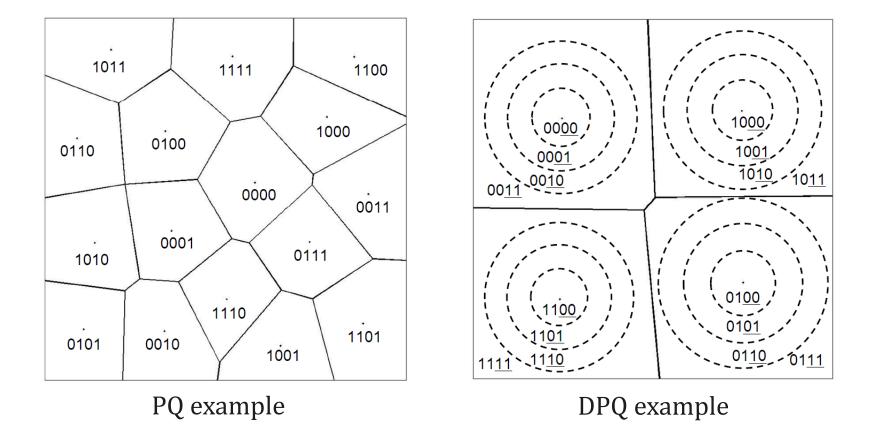
Terms

x: query, y: data, M: # of Subspaces, q^i : quantizer in i^{th} subspace, x^i : sub-vector of x in i^{th} subspace

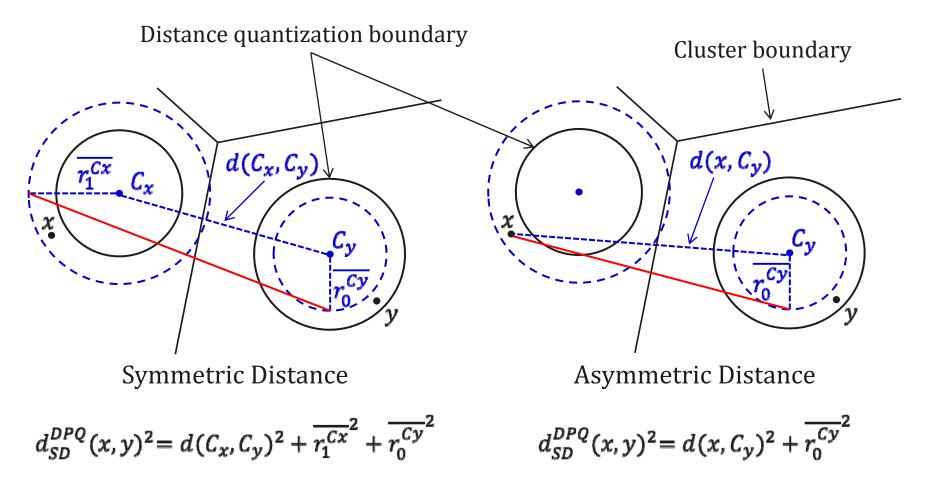
Figures are from [Jegou et al., TPAMI 2011]

DPQ: Distance Encoded PQ

• DPQ encodes quantized distance from the center as well as the cluster index in each subspace.

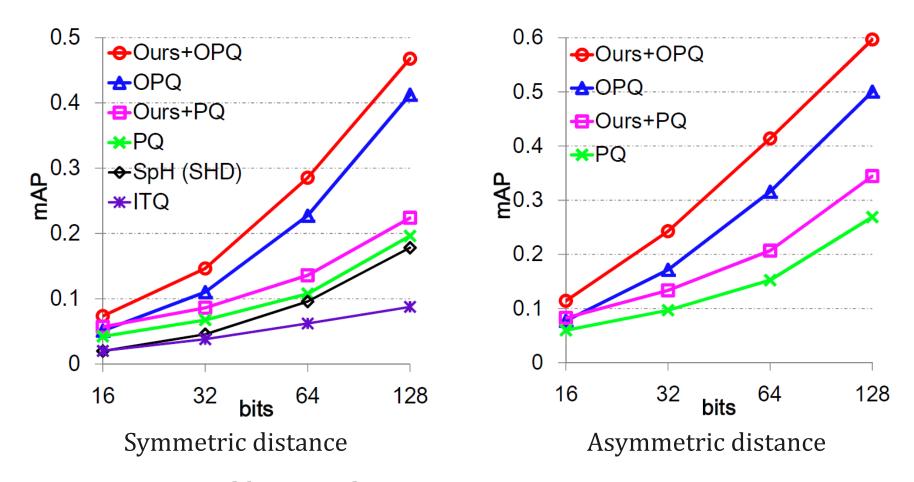


Distance Computation in DPQ



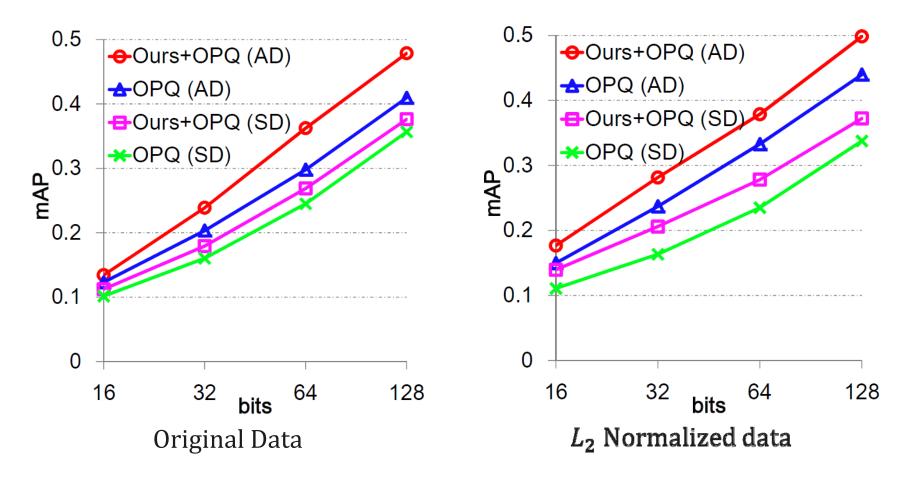
 $\overline{r_j^C}$: average distance from the center to points whose cluster center is C and quantized distance index is j

Results on GIST-1M-960D



1000-nearest neighbor search mAP OPQ: Optimized PQ [Ge et al., CVPR 2013] SpH: Sperical Hashing [Heo et al., CVPR 2012] ITQ: Iterative Quantization [Gong and Lazebnik, CVPR 2011]

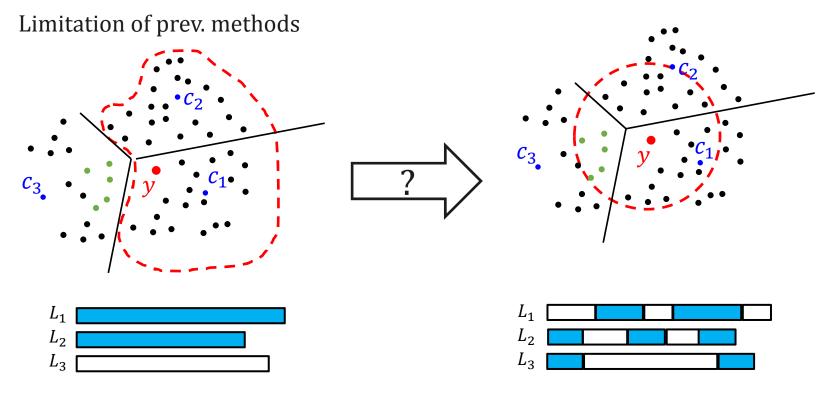
Results on BoW-1M-1024D



1000-nearest neighbor search mAP SD: Symmetric distance AD: Asymmetric distance

Residual-Aware Shortlist Retrieval

[Jaepil et al., CVPR 2016]

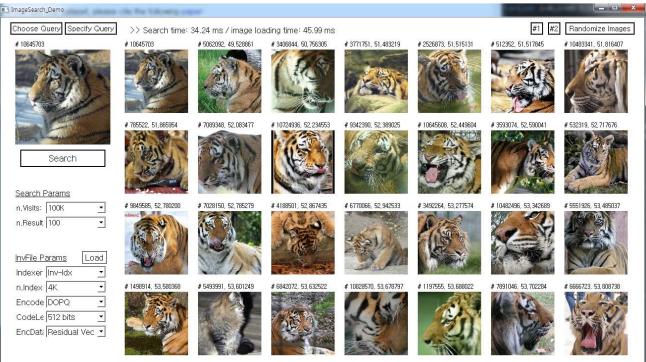


Neighbors could be missed due to the quantization error Select promising subset in parallel from all the lists

Results of Image Retrieval

Collaborated with Adobe

- 11M images
- Use deep neural nets for image representations
- Spend only 35 ms for a single CPU thread



Class Objectives were:

- Understand the basic hashing techniques based on hyperplanes
- Get to know a recent one based on hyperspheres
- Codes are available

http://sglab.kaist.ac.kr/software.htm

Next Time...

Novel applications

