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Student Presentation Guidelines

e Good summary, not full detail, of the
paper

Talk about motivations of the work

Give a broad background on the related work

Explain main idea and results of the paper

Discuss strengths and weaknesses of the
method

KAIST



High-Level Ideas

e Deliver most important ideas and results
e Do not talk about minor details
e Give enough background instead

e Deeper understanding on a paper Is
required

e Go over at least two related papers and
explain them in a few slides

e Spend most time to figure out the most
Important things and prepare good slides
for them
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Overall Structure

e Prepare an overview slide

e Talk about most important things and connect
them well
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Be Honest

e Do not skip important ideas that you don’t
know

e Explain as much as you know and mention
that you don’t understand some parts

e If you get questions you don’t know good
answers, just say It

e In the end, you need to explain them
before the semester ends

KAIST



Result Presentation

e Give full experiment settings and present
data with the related information

e \What does the x-axis mean In the below
Image”?

[ [ == he-ndarllime w.-';:- H-LDIfils
0k | == Rendar time w' B-LODs + CO-layout

| i
P el
i

—3
e e |
[ ]

ik
=]
[

iy

- log scale

Render time (sec)
=

=== “"H'“'E"'"ﬁ = L -1;

! 2 4 8 18 932 B4 128 256

]

e After showing the data, give a message
that we can pull of the data

e Show Images/videos, If there are KAIST



Utilizing Existing Resources

e Use author’s slides, codes, and video, If
they exist

e Give proper credits/ack. or citations
e Without them, you are cheating!
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Deliver Main Ideas of the Paper

e Identify main ideas/contributions of the
paper and deliver them

e If there are prior techniques that you need
to understand, study those prior
techniques and explain them

e For example, A paper utilizes B’s technique in
Its main idea. In this case, you need to explain
B to explain A well.
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Audience feedback form

Date:
Talk title:
Speaker:

1. Was the talk well organized and well prepared?
5. Excellent 4. good 3: okay 2: less than average 1: poor

2. Was the talk comprehensible? How well were important concepts
covered?
5. Excellent 4. good 3: okay 2: less than average 1: poor

Any comments to the speaker

KAIST



Prepare Quiz

e Review most important concepts of your
talk

e Prepare a few (three or four) multiple-
choices questions
e Example: What is the biased algorithm?

e A: Given N samples, the expected mean of the
estimator is |

e B: Given N samples, the exp. Mean of the
estimatoris | + e

e C: Given N samples, the exp. Mean of the
estimator is | + e, where e goes to zeor, as N
goes to infinite

KAIST



Class Objectives

e Understand the basic hashing techniques
based on hyperplanes

e Get to know a recent one based on
hyperspheres

KAIST



12

Review of Basic Image Search

feature space
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Image Search

Finding visually similar images




Image Descriptor

High dimensional point
(BoW, GIST, Color Histogram, etc.)

distl sim1



Image Descriptor

Hinh dimen<innal nnint

Nearest neighbor search (NNS)

In high dimensional space

distl sim1

15
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Challenge

BoW GIST
Dimensions 1000+ 300+
1 image 4 KB+| 1.2 KB+
1B images 3 TB+ 1 TB+

144 GB memory 128 bits

1 billion images 1 image

KAIST
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Binary Code

00001




Binary Code

11000 -
be 00001
11000 . ’
|7 .| 00011
* ok
11001 - <. | 00111
* Benefits

- Compression
- Very fast distance computation
(Hamming Distance, XOR)
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Hyper-Plane based Binary Coding

KAIST
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Hyper-Plane based Binary Coding

KAIST



Distance between Two Points

e Measured by bit
differences, known as
Hamming distance

e Efficiently computed
by XOR bit operations 0

dnd(bi, b;) =
‘b,,/ @bj‘
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Good and Bad Hyper-Planes

N L

Previous work focused on

how to determine good hyper-planes
22 KAIST
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Components of Spherical
Hashing

e Spherical hashing
e Hyper-sphere setting strategy

e Spherical Hamming distance

KAIST
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Components of Spherical
Hashing

e Spherical hashing

KAIST
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Spherical Hashing [Heo et al.,
CVPR 12]
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Spherical Hashing [Heo et al.,
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Hyper-Sphere vs Hyper-Plane
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Components of Spherical
Hashing

e Hyper-sphere setting strategy

KAIST
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Good Binary Coding [veiss 2008, He 2011]

1. Balanced partitioning
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2. Independence
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Intuition of Hyper-Sphere Setting

1. Balance 2. Independence

S|
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N | b
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Hyper-Sphere Setting Process

1. Balance
- by controlling radius

for n(s) = %

2. Independence
- by moving two hyper-
spheres for n(S; N S;) = %
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lteratively repeat step 1, 2 until convergence.
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Components of Spherical
Hashing

e Spherical Hamming distance

KAIST



Max Distance and Common ‘1’

Common ‘1’s

KAIST
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Max Distance and Common ‘1’

Common ‘1’s

A 2
N
o
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Max Distance and Common ‘1’

Common ‘1’s: 1 Common ‘1's: 2 ‘EOUFE

SLEEd

T T

0 4 8 12 16
Num. of common +1 bits

Avg. of max. distances

Average of maximum distances between two
partitions: decreases as number of common ‘1’
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Spherical Hamming Distance (SHD)
_ 1bi & by
b; N\ b;

SHD: Hamming Distance divided by the number
of common ‘1’s.

dshd(bi, b;)

36 KAIST



Results

-e-Ours-SHD
024 "5 0urscHD T
+RMMH-L2
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Binary code length (the number of bits)

384 dimensional 1 million GIST descriptors
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Results
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Results
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Summary

e The need of binary code embedding

e Spherical binary code embedding
e Uses spherical hashing for tighter bounds
e |terative process to achieve balance and independence
e Spherical Hamming distance

40 KAIST



Summary
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Distance Encoded
Product Quantization

Jae-Pil Heo, Zhe Lin, and Sung-Eui Yoon

CVPR 2014



PQ: Product Quantization [Jegou et al., TPAMI 2011]
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Distance Computation in PQ

Symmetric Distance Asymmetric Distance
M M
af y?= ) |l () - a0’ 2= ) [x - ()|
i=1 i=1

Terms
x: query, y: data, M: # of Subspaces,
g': quantizerin i*” subspace, x*: sub-vector of x in i** subspace

Figures are from [Jegou et al., TPAMI 2011]



DPQ: Distance Encoded PQ

* DPQ encodes quantized distance from the center as
well as the cluster index in each subspace.
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Distance Computation in DPQ

Distance quantization boundary

Cluster boundary

Symmetric Distance Asymmetric Distance

42 (x, y)2= d(C,, C))2 + 707 +r"3’ der? (x,y)?=d(x, ,,)2+r03’

1?: average distance from the center to points whose cluster centeris € and
quantized distance index s j



Results on GIST-1M-960D
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Results on BoW-1M-1024D
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Residual-Aware Shortlist Retrieval

[Jaepil et al., CVPR 2016]

Limitation of prev. methods

Neighbors could be missed Select promising subset in
due to the quantization error parallel from all the lists
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Results of Image Retrieval

e Collaborated with Adobe
e 11M images

e Use deep neural nets for image representations

e Spend only 35 ms for a single CPU thread

8] ImageSearch_Demo s —"
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|Choose @uery| |Sbecify Query|
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Search Params
n Misits: | 100K 'i
n.Result 100 'l

InvFile Params
Indexer m
n.ndex h
Encode lm
Codele W
EncDat: m

> Search time: 34,24 ms / image loading time: 45.99 ms
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# 8549585, 52, 780200
iz P B
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+ 2526873, 51.516131 # 512352, 61.517545 # 10433341, 51.816407
- - =
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Class Objectives were:

e Understand the basic hashing techniques
based on hyperplanes

e Get to know a recent one based on
hyperspheres

e Codes are available

http://sglab.kaist.ac.kr/software.htm
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Next Time...

e Novel applications

KAIST



