SketchNet: Sketch Classification with Web Images[CVPR `16]

CS688 Paper Presentation 1

Doheon Lee 20183398

2018. 10. 23

Table of Contents

- Introduction
- Background
- SketchNet
- Result

Introduction

Properties of Sketch Images

- Compared to Images
 - Texture less
 - Colorless
 - Different styles by people

Pizza? Wheel?

Samples of cats drawn by human

Sketch-Based Image Retrieval

- Find related image from sketch
- Large difference between sketch and image

Relation between Image and sketch

- Sketch is drawn from image
- Sketch-Based Image Retrieval can be considered as inverse task for drawing sketch

Learn shared latent structures

Inter class difference

 Previous presentations are focus on intraclass difference

 This presentation work focuses on interclass classification

From chiwan's slide

Background

Manual Annotation

- For supervised learning, we need a label for each datum
- However, high degree annotations are expensive

Berman et al., What's the Point: Semantic Segmentation with Point Supervision, ECCV 16

Weak Supervision

 Lower degree annotation at train time than the required output at the test time

(Regular)
Supervised
Learning

{motorbike,person}

Target Data

{motorbike,person}

Weakly
Supervised
Learning

{motorbike,person}

{motorbike (b-box), person (b-box)}

Triplet Pair

- Construct pair with positive and negative samples
 - Positive: similar image to anchor
 - Negative: Different image to anchor

Make positive distance small, while negative difference large

How Do Human Sketch Objects[TOG `12]

- Construct Sketch Dataset: TU-Berlin
 - 250 category
 - 20K sketches
- Sketch classification from bag-of-features related SIFT[Lowe '04]
 - Limited to specific class of sketch with small variations
 - Represent a sketch as a frequency histogram of visual words

How Do Human Sketch Objects[TOG `12]

- Contents of TU-Berlin Dataset
 - Data labeled as "alarm clock"

80 instances for each 250 category

SketchNet

Key Idea

 To Learn shared latent structures between sketch and image

Construct triplet pair for sketch and images

Construct training pair

- Use Alexnet with pre-trained model on ImageNet
- Fine-tune with TU-Berlin dataset and collected Web Images

Mixed dataset (TU-Berlin and Web Images)

Construct training pair

 For each sketch images, the nearest images in same category will have coherent appearance

Find 5 most inaccurate categories

Construct training pair

- Now we have 5 positive images and 25 negative images
 - Construct 5x25 = 125 triplet pairs

Sketch Net network architecture

- Because of significant gap between image and sketch, design new network
 - S-Net, R-Net, C-Net

Sketch Net network architecture

- S-Net: Learning sketch related features
- R-Net: Learning image related features
- C-Net: Merge feature maps between image and sketch
 - Make positive image pair generate higher score than negative image pair

Loss function

- Combine classification loss and ranking loss
- Classification loss
 - ability on image classification

$$egin{aligned} L_c(x^i, y^i, W_c) &= -log P(y^i = k | x^i, W_c) \ &= -log rac{e^{-f^k(x^i, W_c)}}{\sum_{l=1}^C e^{-f^l(x^i, W_c)}} \end{aligned}$$

x: input image
y: input label
k: category label

W: weight

C: # of categories

Ranking loss

$$L_r(\mathbf{p}_+^i, \mathbf{p}_-^i, y^i) = max(0, 1 - (\mathbf{p}_- - \mathbf{p}_+))$$

p+: positive pair score

p-: negative pair score

Loss function

$$L_{SketchNet} = L_r + \lambda * Lc$$

Testing Network

- As we do not know label at the testing, triplet pair cannot be constructed
 - New network with
 One R-Net, S-Net and C-Net

Testing Network

- For given sketch, using Alexnet, find 5 categories.
- For each category, find 5 nearest real images

These image pairs are used for

classification

Result

Experiment benchmark

- The experiment are done in TU-Berlin dataset
- For each category, contains 80 data
 - The experiments are done in various test and training data ratio

Experiment benchmark

Table 2. The comparison classification results on TU-Berlin sketch benchmark # of training data

Methods	8	16	24	32	40	48	56	64	72
SketchNet	58.04%	64.43%	67.89%	72.01%	73.54%	75.18%	76.08%	77.33%	80.42%
SketchNet(no metric)	55.69%	64.37%	66.20%	71.19%	69.57%	73.62%	73.43%	76.50%	77.41%
AlexNet(mixed real images)	51.96%	59.22%	63.80%	65.97%	68.58%	69.80%	70.46%	72.31%	73.25%
AlexNet [20]	54.8%	62.3%	67.6%	68.12%	69.86%	71.65%	72.62%	74.02%	75.02%
GoogLeNet [32]	52.01%	59.61%	62.45%	67.48%	69.19%	70.5%	71.5%	72.4%	75.25%
NIN [23]	51.4%	61.9%	65.50%	68.05%	70.61%	71.50%	72.02%	73.82%	74.40%
VGGNet [5]	53.85%	60.65%	63.05%	65.54%	67.34%	69.54%	73.83%	75.17%	76.53%
FisherVector size 24 (SP) [29]	43%	52%	56%	59%	62%	65%	66%	67%	68%
FisherVector size 24 [29]	41%	50%	53%	56%	60%	62%	64%	64%	65%
FisherVector size 16 (SP) [29]	44%	50%	55%	57%	60%	63%	64%	65%	66%
FisherVector size 16 [29]	39%	45.5%	50%	53%	56%	59%	60%	61%	62%
Eitz et al. [12] (SVM soft)	33%	41%	44%	46%	50%	51%	54%	55%	55%
Eitz et al. [12] (SVM hard)	32%	37%	42%	45.5%	48%	49%	50.8%	53%	53%
Eitz et al. [12] (Knn soft)	26%	31%	34.8%	36%	39%	40.5%	42%	43%	44%
Eitz et al. [12] (knn hard)	22%	26%	28%	31%	33%	34.5%	35%	36%	37.5%

Thank you for Listening