CS688 Student Presentation

Deep Residual Learning for Image Recognition (CVPR16)

> 18.11.01 Youngbo Shim

Review: Personalized Age Progression with Aging Dictionary

- Speaker: Hyunyul Cho
- Problem
 - Prev. works of age progression didn't considered personalized facial characteristics
 - Prev. works required dense long-term face aging sequences
- Idea
 - Build two layers (aging/personalized) to retain personal characteristics
 - Construct an aging dictionary

Aging layer

• From Hyunyul Cho's presentation slides

CS688 Student Presentation

Deep Residual Learning for Image Recognition (CVPR16)

> 18.11.01 Youngbo Shim

Motivation

• At the moment (~2015)

Related work

- GoogLeNet (2015)
 - Inception module
 - Reduced parameters and FLOPs by dimension reduction
 - auxiliary classifier
 - Avoid vanishing gradient problem

• Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

Related work

- VGG (2015)
 - Explored the ability of network depth
 - 3×3 Convolution kernels

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015., from https://laonple.blog.me/220749876381

Motivation

- At the moment (~2015)
- Could we dig deeper?

Motivation

- Degradation problem
 - Not caused by overfitting
 - Hard to optimize due to large parameter set

Idea

Networks Give same output

- Deep network should work well at least as shallow one does.
- If extra layers' are identity mappings.

From https://medium.com/@14prakash/understanding-and-implementing-architectures-of-resnet-and-resnext-for-state-of-the-art-imagecf51669e1624

Idea

- Residual Learning
 - Shortcut connections with identity mapping reference
 - $F(x) \coloneqq H(x) x$ (Residual function)
 - If identity mapping is optimal for the case, F(x)'s weight will converge to zero.

Experiment 1: ImageNet classification

Experiment 1: Findings

- plain-18 is better than plain-34
 - degradation

error (%)

- ResNet-34 is better than ResNet-18
 - Deeper, better!

plain

ResNet

Experiment 1: Findings

• ResNet-34 successfully reduces error compared to its counterpart (plain-34)

Experiment 1: Findings

• ResNet shows faster convergence at the early stage

Idea

- How could we dive deeper?
 - Practical problem: # of parameters & calculations ∝ training time
- Deeper Bottleneck Architecture

- 1×1 convolution layer reduces the dimension
- Similar to GoogLeNet's inception module

Experiment 2: Deeper Imagenet classification

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112	7×7, 64, stride 2					
				3×3 max pool, stride 2			
conv2_x	56×56	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	
conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\3\times3,128\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,128\\3\times3,128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$	
conv4_x	14×14	$\begin{bmatrix} 3\times3,256\\3\times3,256\end{bmatrix}\times2$	$\begin{bmatrix} 3\times3,256\\3\times3,256\end{bmatrix}\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$	
conv5_x	7×7	$\begin{bmatrix} 3\times3,512\\ 3\times3,512\end{bmatrix}\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	
	1×1 average pool, 1000-d fc, softmax						
FLOPs		1.8×10^{9}	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10^{9}	
$\begin{array}{c} & & & & & & & \\ & & & & & & \\ & & & & $							

Experiment 2: Result

- Better than state-of-the-art methods
- Still(!) deeper, better
- Low complexity
 - ResNet-152 (11.3b FLOPs) < VGG-16/19 (15.3/19.6b FLOPs)

method	top-1 err.	top-5 err.	
VGG [40] (ILSVRC'14)	-	8.43†	
GoogLeNet [43] (ILSVRC'14)	-	7.89	
VGG [40] (v5)	24.4	7.1	
PReLU-net [12]	21.59	5.71	
BN-inception [16]	21.99	5.81	
ResNet-34 B	21.84	5.71	
ResNet-34 C	21.53	5.60	
ResNet-50	20.74	5.25	
ResNet-101	19.87	4.60	
ResNet-152	19.38	4.49	

Experiment 3: CIFAR-10 classification

- CIFAR-10 has relatively small input of 32×32
 - Could test extremely deep network (depth: 1202)
- Observe the behavior of networks in relation with depth

me	error (%)		
Max	9.38		
NIN	8.81		
DSI	8.22		
	# layers	# params	
FitNet [34]	19	2.5M	8.39
Highway [41, 42]	19	2.3M	7.54 (7.72±0.16)
Highway [41, 42]	32	1.25M	8.80
ResNet	20	0.27M	8.75
ResNet	32	0.46M	7.51
ResNet	44	0.66M	7.17
ResNet	56	0.85M	6.97
ResNet	110	1.7M	6.43 (6.61±0.16)
ResNet	1202	19.4M	7.93

Experiment 3: Result

• Deeper, better until 110 layers...

Experiment 3: Result

- Deeper, better until 110 layers...
- Not in 1202 layers anymore
 - Both 110 & 1202 optimizes well (training error converges to <0.1%)
 - Overfitting occurs (higher validation error rate)

Experiment 3: Result

- Standard deviation of layer responses
- Small responses than their counterparts (plain networks)
 - Residual functions are closer to zero
- Deeper = smaller response

- ResNet
- Stable layer stacking by residual learning
- Empirical data to show performance and depth's influence

Wrap-up

- ResNet
- Stable layer stacking by residual learning
- Empirical data to show performance and depth's influence

Quiz

- Q1. What was the problem of deep CNNs before ResNet?
 - 1. Degradation problem
 - 2. Identity mapping
 - 3. Overfitting
- Q2. What is the name of architecture of ResNet to reduce training time?
 - 1. Inception module
 - 2. Deeper bottleneck architecture
 - 3. Multi-layer perceptron

• From Kaiming He slides "Deep residual learning for image recognition." ICML. 2016.