Jain et al. (ICCV 2017), "SuBiC: A supervised, structured binary code for image search"

20183385 Huisu Yun

30 October 2018

CS688 Fall 2018 Student Presentation

Review: Doersch et al. (ICCV 2015)

 "[S]patial context as a source of [...] signal for training a rich visual representation"

Motivation

- Raw feature vectors are very long (cf. PA2)
 - which is why we want to use specialized binary codes

- Binary codes for image search (cf. lecture slides)
 - ...should be of reasonable length
 - ...and provide faithful representation

Background: Supervised codes (1/2)

Liu et al. (CVPR 2016): pairwise supervision

Pairwise loss function
$$L_r(\mathbf{b}_1, \mathbf{b}_2, y) = \frac{1}{2}(1 - y)||\mathbf{b}_1 - \mathbf{b}_2||_2^2$$
 Similar images—similar codes (Hamming distance approximated using Euclidean distance) $+\frac{1}{2}y \max(m - ||\mathbf{b}_1 - \mathbf{b}_2||_2^2, 0)$ Dissimilar images—different codes $+\alpha(||\mathbf{b}_1| - \mathbf{1}||_1 + ||\mathbf{b}_2| - \mathbf{1}||_1)$ Regularization (+1 or -1)

4 Image reproduced from Liu et al. 2016. "Deep supervised hashing for fast image retrieval"

Background: Supervised codes (2/2)

Lai et al. (CVPR 2015): triplet supervision

Triplet ranking loss
$$\ell_{triplet}(\mathcal{F}(I), \mathcal{F}(I^+), \mathcal{F}(I^-))$$

$$= \max(0, ||\mathcal{F}(I) - \mathcal{F}(I^+)||_2^2 - ||\mathcal{F}(I) - \mathcal{F}(I^-)||_2^2 + 1)$$

$$s.t. \ \mathcal{F}(I), \ \mathcal{F}(I^+), \ \mathcal{F}(I^-) \in [0, 1]^q.$$

Background: Vector quantization

- Group similar vectors
 - ...such that each group has approximately the same members
 - Vectors are represented by the group (centroid) they belong to
- Jégou et al. (TPAMI 2011): Product Quantization (PQ)
 - Split the vector into small subvectors; quantize them separately
 - Results in **structured codes** (why?)

Introduction

- SuBiC Supervised, structured binary codes
 - Supervised: trained such that class labels can be predicted; point-wise supervision
 - Structured: one-hot blocks (cf. quantized subvectors in PQ)

Overview

- Code length: KM (M blocks, each having K dimensions)
 - Training time: produced by block softmax nonlinearity
 - Test time: produced by block one-hot encoder

$$\Delta_K \triangleq \{\mathbf{d} \in [0,1]^K \text{ s.t. } \|\mathbf{d}\|_1 = 1\}$$
 Convex hull of below (training time output) $\mathcal{K}_K \triangleq \{\mathbf{d} \in \{0,1\}^K \text{ s.t. } \|\mathbf{d}\|_1 = 1\}$ Set of one-hot vectors (test time output)

$$\widetilde{\mathbf{b}}_m = \frac{1}{\|\exp(\mathbf{z}_m)\|_1} \exp(\mathbf{z}_m)$$

$$\mathbf{b}_m[k] = \begin{cases} 1 & \text{if } k = \operatorname{argmax}_r \mathbf{z}_m[r] \\ 0 & \text{otherwise,} \end{cases}$$

Training

- Newly introduced entropy-based losses
 - **Mean entropy loss** (weighted by γ): for one-hot structure
 - **Batch entropy loss** (weighted by μ): for uniform block support
- Cross entropy loss
 - Our usual choice for classification problems

$$Loss(\{(\mathbf{I}^{(i)}, y^{(i)})\}_{i \in \mathcal{T}}) \triangleq \frac{1}{T} \sum_{i \in \mathcal{T}} \left[\ell(\mathbf{s}^{(i)}, y^{(i)}) + \frac{Cross \ entropy}{M \log_2 K} \operatorname{E}(\widetilde{\mathbf{b}}^{(i)}) - \frac{\mu}{M \log_2 K} \operatorname{E}(\overline{\mathbf{b}}) \right]$$

$$Mean \ entropy \ loss$$

$$Ratch \ entropy \ loss$$

$$Cross \ entropy$$

$$\ell(\mathbf{s}, y) \triangleq -\frac{1}{\log_2 C} \log_2 \mathbf{s}[y]$$

Image search with SuBiC

- While the code length in the SuBiC neural network architecture is KM, the actual storage footprint of the produced codes can be easily reduced to M log₂ K
 - e.g. the 16-bit code ((0, 0, 0, 0, 0, 0, 0, 1), (0, 0, 1, 0, 0, 0, 0)) can be compacted to (7, 2) = ((1, 1, 1), (0, 1, 0)) of length 6

 Only M additions required for asymmetric distance computation (i.e. between a binary code and its realvalued cousin)

Results

Method	12-bit	24-bit	36-bit	48-bit
CNNH+ [45]	0.5425	0.5604	0.5640	0.5574
DLBHC [32]	0.5503	0.5803	0.5778	0.5885
DNNH [31]	0.5708	0.5875	0.5899	0.5904
DSH [33]	0.6157	0.6512	0.6607	0.6755
KSH-CNN [35]	-	0.4298	-	0.4577
DSRH [48]	-	0.6108	-	0.6177
DRSCH [46]	-	0.6219	-	0.6305
BDNN [17]	-	0.6521	-	0.6653
SUBIC (ours)	0.6349	0.6719	0.6823	0.6863

Table 2: **Single-domain category retrieval.** Comparison against published mAP values on Cifar-10 for various supervised deep hashing methods. See the *ImageNet* column of Table 3 for single-domain results on ImageNet.

Method	VOC2007	Caltech-101	ImageNet
PQ [24]	0.4965	0.3089	0.1650
CKM [38]	0.4995	0.3179	0.1737
LSQ [37]	0.4993	0.3372	0.1882
DSH-64 [33]	0.4914	0.2852	0.1665
SUBIC 2-layer	0.5600	0.3923	0.2543
SUBIC 3-layer	0.5588	0.4033	0.2810

Table 3: **Cross-domain category retrieval.** Performance (mAP) using 64-bit encoders across three different datasets using VGG-128 as base feature extractor. For completeness, results on ImageNet validation set (*i.e.* single-domain retrieval) are provided in the third column.

[Table 2]
$$K = 64$$
; $M = one \ of \{2, 4, 6, 8\}$

Method	Oxford5K	Paris6K
PQ [24]	0.2374	0.3597
LSQ [37]	0.2512	0.3764
DSH-64 [33]	0.2108	0.3287
SuBiC	0.2626	0.4116

Table 4: **Instance retrieval.** Performance (mAP) comparison using 64-bit codes for all methods.

	ImageNet		VOC2007
	Top-1 acc.	Top-5 acc.	mAP
VGG-128*	53.80	77.32	73.79
PQ 64-bit	39.88	67.22	65.94
CKM 64-bit	41.15	69.66	67.25
SuBiC soft*	50.07	74.11	70.20
SUBIC 64-bit	47.77	72.16	67.86

Table 5: Classification performance with different compact codes. The rows marked (*) are non-binary codes. See the text for details.

[Table 5] SuBiC soft: using the block softmax nonlinearity instead of block one-hot encoder in test architecture

Discussion

 Combining the self-structuring properties of unsupervised learning with the strength of supervised deep hashing approaches

- The decent cross-domain performance would make SuBiC a good candidate for use in systems without much parallelism (e.g. GPU assistance) available
 - However, the block one-hot structure might be an obstacle;
 deep hash codes might be faster to compare on modern CPUs