Jain et al. (ICCV 2017),
“SuBIiC: A supervised, structured
binary code for image search”

20183385 Huisu Yun
30 October 2018
CS688 Fall 2018 Student Presentation



Review: Doersch et al. (ICCV 2015)

¢ “[S]patial context as a source of [...] signal for training a
rich visual representation”

Example:

2 Image reproduced from Doersch et al. 2015. “Unsupervised visual representation learning by context prediction”



Motivation

¢ Raw feature vectors are very long (cf. PA2)

— ...which is why we want to use specialized binary codes

¢ Binary codes for image search (cf. lecture slides)

— ...Should be of reasonable length
— ...and provide faithful representation



Background: Supervised codes (1/2)

¢ Liu et al. (CVPR 2016): pairwise supervision
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4 Image reproduced from Liu et al. 2016. “Deep supervised hashing for fast image retrieval”



Background: Supervised codes (2/2)

¢ Lai et al. (CVPR 2015): triplet supervision
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5 Image reproduced from Lai et al. 2015. “Simultaneous feature learning and hash coding with deep neural networks”



Background: Vector quantization

¢ Group similar vectors
— ...such that each group has approximately the same members
— Vectors are represented by the group (centroid) they belong to

¢ Jegou et al. (TPAMI 2011): Product Quantization (PQ)

— Split the vector into small subvectors; quantize them separately
— Results in structured codes (why?)

Symmetric
distance
computation

Asymmetric
distance
computation

6 Image reproduced from Jégou et al. 2011. “Product quantization for nearest neighbor search”



Introduction

¢ SuBIC — Supervised, structured binary codes

— Supervised: trained such that class labels can be predicted,;
point-wise supervision

— Structured: one-hot blocks (cf. quantized subvectors in PQ)

One-hot blocks
(cf. PQ)
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7 Image reproduced from Jain et al. 2017. “SuBiC: A supervised, structured binary code for image search”




Overview

¢ Code length: KM (M blocks, each having K dimensions)
— Training time: produced by block softmax nonlinearity
— Test time: produced by block one-hot encoder
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8 Image reproduced from Jain et al. 2017. “SuBiC: A supervised, structured binary code for image search”



Training

¢ Newly introduced entropy-based losses
— Mean entropy loss (weighted by y): for one-hot structure
— Batch entropy loss (weighted by u): for uniform block support

¢ Cross entropy loss

— Our usual choice for classification problems

Classification loss
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Image search with SuBIC

¢ While the code length in the SuBIC neural network
architecture is KM, the actual storage footprint of the
produced codes can be easily reduced to M log, K

— e.g. the 16-bit code ((0,0,0,0,0,0,0, 1),(0,0,1,0,0,0,0, 0)
can be compacted to (7, 2) = ((1, 1, 1), (O, 1, 0)) of length 6

¢ Only M additions required for asymmetric distance
computation (i.e. between a binary code and its real-
valued cousin)



Results

Method  12-bit  24-bit  36-bit  48-bit
CNNH+[45] 0.5425 0.5604 0.5640 0.5574 [Table 2] K = 64; M = one of {2, 4, 6, 8}
DLBHC[3?] 0.5503 0.5803 0.5778 0.5885
DNNH[31] 05708 0.5875 0.5899 0.5904
DSH[3] 0.6157 0.6512 0.6607 0.6755

DSRH [5] - 0.6108 - 06177 PQ[24] 02374 0.3597
DRSCH [46] - 0.6219 - 0.6305 LSQ[37]  0.2512 0.3764
BDNN [17] - 0.6521 - 0.6653 DSH-64 [35] 0.2108 0.3287
SUBIC (ours) 0.6349 0.6719 0.6823 0.6863 SuBIC 0.2626 0.4116
Table 2: Single-domain category retrieval. Comparison Table 4: Instance retrieval. Performance (mAP) compari-
against published mAP values on Cifar-10 for various su- son using 64-bit codes for all methods.
pervised deep hashing methods. See the ImageNet column
of Table 3 for single-domain results on ImageNet. ImageNet VOC2007
Top-1 acc.  Top-5 acc. mAP
Method VOC2007 Caltech-101  ImageNet VGG-128" 53.80 71.32 73.79
PQ[24]  0.4965 0.3089 0.1650 PQ 64-bit 39.88 67.22 65.94
CKM [3¢] 0.4995 0.3179 0.1737 CKM 64-bit 41.15 69.66 67.25
LSQ[37] 0.4993 0.3372 0.1882 SUBIC soft” 50.07 74.11 70.20
DSH-64 [37] 0.4914 0.2852 0.1665 SUBIC 64-bit 47.77 72.16 67.86
SUBIC 2-layer  0.5600 0.3923 0.2543
SUBIC 3-layer  0.5588 0.4033 0.2810 Table 5: Classification performance with different com-
pact codes. The rows marked (*) are non-binary codes. See
Table 3: Cross-domain category retrieval. Performance the text for details.

(mAP) using 64-bit encoders across three different datasets
using VGG-128 as base feature extractor. For complete-  [Table 5] SuBiC soft: using the block softmax nonlinearity

1 ness, results on ImageNet validation set (i.e. single-domain  jnstead of block one-hot encoder in test architecture
retrieval) are provided in the third column.
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Discussion

¢ Combining the self-structuring properties of
unsupervised learning with the strength of supervised
deep hashing approaches

¢ The decent cross-domain performance would make
SuBIC a good candidate for use in systems without
much parallelism (e.g. GPU assistance) available

— However, the block one-hot structure might be an obstacle;
deep hash codes might be faster to compare on modern CPUs



