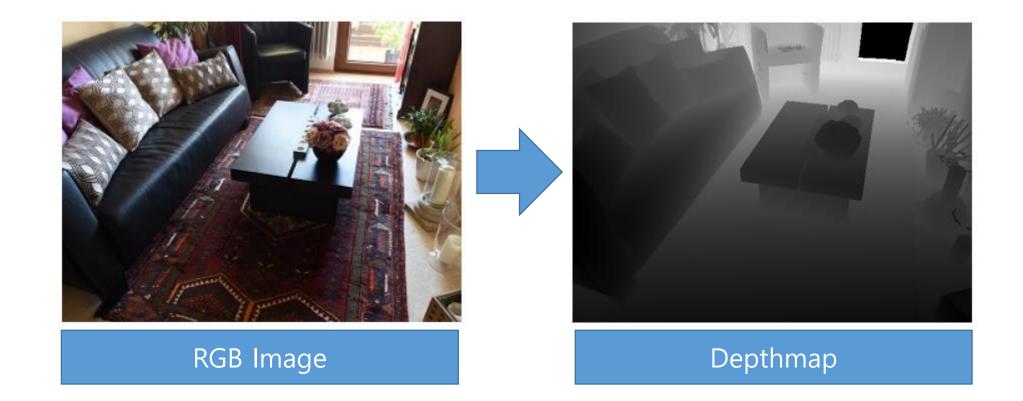
Evaluation of CNN-based Single-Image Depth Estimation Methods(CVPR 18)

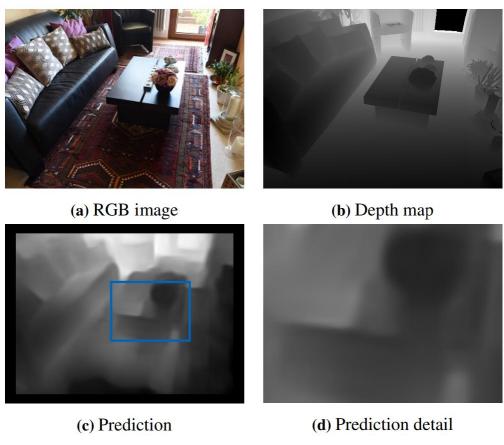

Tobias Koch, Lukas Liebel, Friedrich Fraundorfer, Marco Körner

20184269 Taehee Kim

18. 11. 20. CS688 Student Presentation

Main Topic

- Single image -> Depthmap estimation
- Application: Shape, depth aware image retrieval


Introduction

Problem

Goals

Problem

- Error metrics does not reflect detailed structures
- No sufficient dataset for training

Positively evaluated but poor details

Goals

- 1. Introduce a set of new **error metrics**
- 2. Present a new dataset from laser scan
- 3. **Evaluate** state-of-art methods

1. Error Metrics

Commonly Used Error Metrics
Hard Examples
Requirements for Good Metric
Planarity, Orientation Metric
Depth Boundary Metric

Commonly Used Error Metrics

Threshold: % of y such that $\max(\frac{y_i}{y_i^*}, \frac{y_i^*}{y_i}) = \sigma < thr$

Absolute rel. diff.: $\operatorname{rel} = \frac{1}{T} \sum_{i,j} \left| y_{i,j} - y_{i,j}^* \right| / y_{i,j}^*$

Squared rel. diff.: srel = $\frac{1}{T} \sum_{i,j} |y_{i,j} - y_{i,j}^*|^2 / y_{i,j}^*$

RMS (linear): RMS = $\sqrt{\frac{1}{T}\sum_{i,j}\left|y_{i,j}-y_{i,j}^*\right|^2}$

RMS (log): $\log_{10} = \sqrt{\frac{1}{T} \sum_{i,j} \left| \log y_{i,j} - \log y_{i,j}^* \right|^2}$

Hard Examples

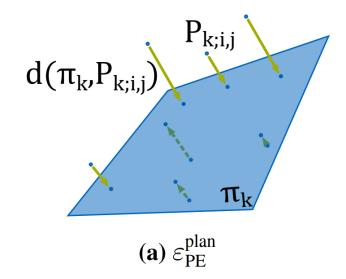
Paint? Bumps?

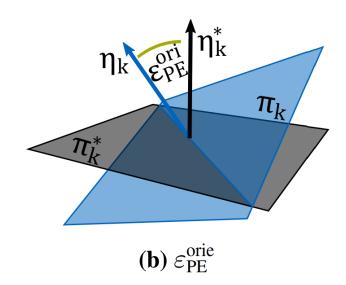

Reflection? Shallow Region??

Requirements for Good Metric

(Overall accuracy)+

- Capture planarity
- Orientation of surface
- Depth Discontinuity(edge) location

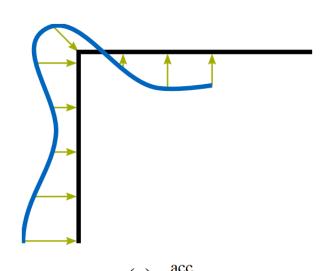


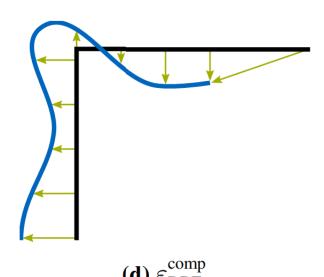


Planarity, Orientation Metric

- Annotated Plane: $\pi_k^* = (\eta_k^*, d_k^*)$ (normal vector, origin)
- Project depthmap Y_k to 3D points $P_{k;i,j}$

$$arepsilon_{ ext{PE}}^{ ext{plan}}\left(oldsymbol{Y}_{k}
ight) = \mathbb{V}\left[\sum_{oldsymbol{P}_{k;i,j} \in \mathcal{P}_{k}} d\left(oldsymbol{\pi}_{k}, oldsymbol{P}_{k;i,j}
ight)
ight] \qquad arepsilon_{ ext{PE}}^{ ext{orie}}\left(oldsymbol{Y}_{k}
ight) = cos\left(oldsymbol{\eta}_{k}^{ op} \cdot oldsymbol{\eta}_{k}^{*}
ight)$$





Depth Boundary Metric

- Edge prediction using "Structured Edge "
- Euclidian distance between Structured Edge and Ground T.

$$arepsilon_{\mathrm{DBE}}^{\mathrm{acc}}(oldsymbol{Y}) = rac{1}{\sum_{i} \sum_{j} y_{\mathrm{bin};i,j}} \sum_{i} \sum_{j} e_{i,j}^* \cdot y_{\mathrm{bin};i,j}$$

2. Dataset

Existing Datasets

Data Acquisition

Proposed Dataset: IBims-1

Existing Datasets

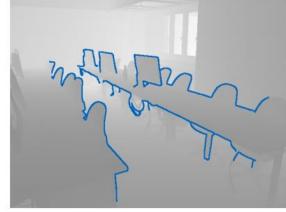
- Multiple laser scan (ETH3D, Tanks&Temples, ...)
 - Occlusion
- Custom Built-in 3D scanner (Kitti)
 - > Low Resolution
- Active RGB-D sensors (NYU depth v2, Matterport3D)
 - > Short range, erroneous specular surface

Data Acquisition

- DSLR + Single laser scanner
- Custom tripod to align optical center

Proposed Dataset: IBims-1

- High-resolution RGB-D with annotations
- Object masks and edges


(a) Camera image

(c) Masks

(b) Ground truth

(d) Distinct edges

3. Evaluation

Previous Works
CNN Based Depth Estimation(Eigen et el)
Quantitative Evaluations
Qualitative Evaluations

Previous Works

- Eigen et el. First CNN based approach.
- Liu et el. CNN + conditional random fields(CRF).
- Laina et el. Fully convolutional network
- Li et el. Two-streamed CNN for depth and depth gradients
- Xu et el. Integrate multiple CNN using CRF

CNN Based Depth Estimation(Eigen et el)

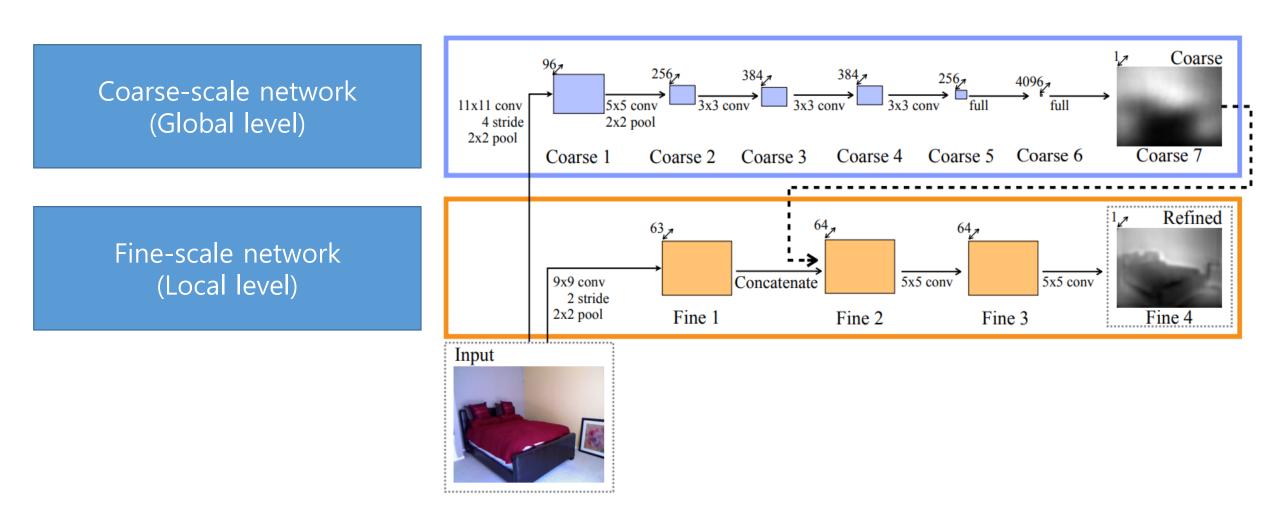


Figure from Eigen et el. "Depth Map Prediction from a Single Image using a Multi-Scale Deep Network"

Quantitative Evaluations

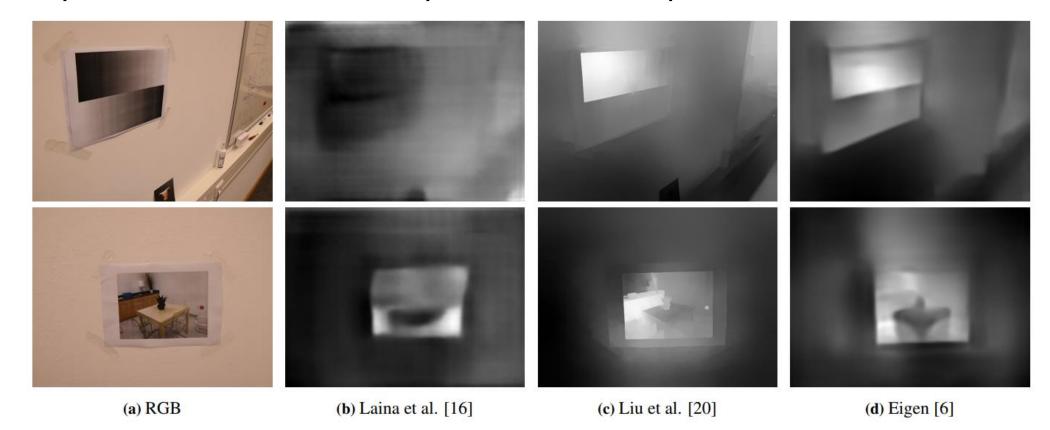

 Li et el is best with standard metrics, but not with proposed metrics

Table 3: Quantitative results for standard metrics and proposed PE, DBE, and DDE metrics on IBims-1 applying different SIDE methods

Method	Standard Metrics ($\sigma_i = 1.25^i$)						PE (in m/°)		DBE (in px)		DDE (in %)		
	rel	\log_{10}	RMS	σ_1	σ_2	σ_3	$arepsilon_{ ext{PE}}^{ ext{plan}}$	$arepsilon^{ m orie}_{ m PE}$	$arepsilon_{ ext{DBE}}^{ ext{acc}}$	$arepsilon_{ ext{DBE}}^{ ext{comp}}$	$arepsilon_{ ext{DDE}}^{0}$	$\varepsilon_{ ext{DDE}}^-$	$\varepsilon_{\mathrm{DDE}}^{+}$
Eigen [7]	0.36	0.22	2.92	0.35	0.63	0.79	0.18	33.27	3.60	48.08	64.53	32.31	3.15
Eigen (AlexNet) [6]	0.32	0.18	2.63	0.42	0.72	0.82	0.21	26.64	3.01	32.00	74.65	21.51	3.84
Eigen (VGG) [6]	0.29	0.17	2.59	0.47	0.73	0.85	0.17	21.64	3.16	27.47	75.10	23.44	1.46
Laina [16]	0.27	0.16	2.42	0.56	0.76	0.84	0.22	32.02	4.58	38.41	77.12	20.89	1.99
Liu [20]	0.33	0.17	2.51	0.46	0.73	0.84	0.22	31.90	2.32	16.85	77.27	16.38	6.35
Li [19]	0.25	0.14	2.32	0.58	0.79	0.86	0.20	26.67	2.36	21.02	80.99	16.44	2.57

Qualitative Evaluations

• Laina et el seems poor, Liu et el seems good (Proposed metrics well represent these points)

