CS688 Student Presentation

Robust Hand Pose Estimation during the Interaction with an Unknown Object (ICCV17)

18.11.20 Youngbo Shim

Problem statement

- Detecting hand pose during interaction with an object
 - from a egocentric depth image

Problem statement

- Challenges
 - Occlusion
 - Self-occlusion
 - Object occlusion
 - Lack of appropriate dataset

From the lecture note

From Taehee Kim's slide

Overview

- Object occlusion: multi-channel pipeline (hand / object)
- Dataset synthesis & Data reproduction

Overview

- Object occlusion: multi-channel pipeline (hand / object)
- Dataset synthesis & Data reproduction

Related work

Segmentation & SVM

Rogez et al. (CVPR'15)

NN search from templates

Segmentation & pixel-wise classification

Related work

- Understanding Everyday Hands in Action from RGB-D Images
 - CNN framework for hand grasp classification
 - GUN-71 dataset based on hand grasp taxonomy

Rogez, Grégory, James S. Supancic, and Deva Ramanan. "Understanding everyday hands in action from rgb-d images." Proceedings of the IEEE international conference on computer vision. 2015.

The flow of this work

- Main idea
 - The shape of an object causes a configuration of the hand grasp
- Simultaneously train DNN using paired depth images for each hand and object

Synthetic dataset

- virtual 3D CAD model of hand and objects
- model fitting method

Images are from SynthHands [ICCV'17], not from this paper.

Only for explanation

background: real depth image

Input images from the paper

• 33 grasps × 40 objects × 48 rotations × 5 populations = 330K depth images

Localization network

Heatmap generation from ConvNet

Localization network

- Heatmap generation from ConvNet
 - Detect center position of each hand and object
 - Crop hand & object images based on detected position

128

256

 $5 \times 5 \times 32$

 $5 \times 5 \times 64$

 $5 \times 5 \times 128$

 $5\times5\times256$

ReLU Pmax

Conv

ReLU

ReLU

Conv ReLU

ReLU

From the supplement

Reproduction of realistic dataset

Reproduction of realistic dataset

- To add "realism" from the network trained with synthetic images
- Signal reconstruction through an autoencoder
 - Trained with (160K real + 80K synthetic) depth images
 - Mimics the actual sensor image

Reproduction of realistic dataset

- Design choice: Original / Synthesized / fused
 - Original: pixel-wise defects due to real sensor artifacts (e.g. holes or missing pixels)
 - Synthesized: Compression distortion occurs

Grasp classification & Pose estimation

Grasp classification

- Collaboratively learn convolutional features
- Share features about grasps from each hand and object perspective

Grasp classification

- Global orientation
 - Top 5 wrist orientations using Softmax function
- Grasp type
 - Top 1 grasp type

Pose Estimation

- Regression in a subset of classified orientation & grasp type
- Nearest neighbor search in the subset
- Regression through matrix completion

Pose Estimation

- Nearest neighbor search
 - Concatenated feature vector used
- Regression in a subset of classified orientation & grasp type
 - 1 grasp × 40 objects × 5 orientations × 5 populations ≈ 1K

Pose Estimation

Matrix completion

- $F_1 \in \mathbb{R}^{l \times n}$, feature vectors of neighbor poses
- $f_2 \in \mathbb{R}^{1 \times n}$, feature vector of input pose
- $P_1 \in \mathbb{R}^{l \times m}$, joint angles of neighbor poses
- $p_2 \in \mathbb{R}^{1 \times m}$, unknown angles of input pose
- l = 32, # of neighbors
- n = 64, dimensionality of feature vector
- m = 18, # of joint angles
- Interpolation of interest angles
 - weighted by feature vector

$$\mathbf{M} = \begin{bmatrix} \mathbf{F_1} & \mathbf{P_1} \\ \mathbf{f_2} & \mathbf{p_2} \end{bmatrix}, \tag{1}$$

$$\mathbf{p_2} = \mathbf{f_2}(\mathbf{F_1})^+ \mathbf{P_1},\tag{2}$$

[•] Sinha, Ayan, Chiho Choi, and Karthik Ramani. "DeepHand: Robust Hand Pose Estimation by Completing a Matrix Imputed with Deep Features-Supplementary Material."

Evaluation

- Design choice evaluation
- Evaluation of multi-channel approach
- Pose estimation results

Evaluation-Design choice analysis

- Original / Synthesized / Fused
 - Tested with GUN-71 dataset

	Original	Synthesized	Fused
Test set Train set	GUN-71	GUN-71	GUN-71
Original	39.75%	16.87%	31.71%
Synthesized	32.86%	37.75%	36.51%
Fused	36.43%	29.31%	41.00%

Table 3: Grasp classification results for 33 grasps evaluated on GUN-71 dataset [19]. The use of reproduction network (spatially fused) improves overall classification results. Note that *Train* denotes the type of training dataset used to train our model and *Test* denotes the format of GUN-71 dataset used for testing our networks.

Model	Classification accuracy
Rogez et al. [19]	20.50 %
Original	39.75 %
Synthesized	37.75 %
Ours (Fused)	41.00 %

Table 4: Accuracy comparison of grasp classification on GUN-71 dataset.

Evaluation-Design choice analysis

- Hand & Object is better
- Considering both perspectives could improve performance

Network	Hand-only	Ojbect-only	Ours
Orientation Acc.	59.31%	51.12%	60.50%
Grasp Acc.	43.87%	49.12%	55.56%

Table 5: Classification accuracy for the orientation of the hand and the grasp type. *Hand only* achieves higher performance to orientation classification than *Object only* but has less impact on grasp classification.

Evaluation-Pose estimation

- Quantitative
 - Mean error with ground truth
 - Angle & distance
 - Smaller the better
- Qualitative
 - (a) Dataset from the paper
 - (b) GUN-71

Wrap-up

(a) Localization ConvNet (b) Data Reproduction Center of Hand & Object Input Depth Global Regression Orientation Pose Grasp Type Estimated Hand Fused Images (d) Pose Estimation (c) Grasp Classification

Synthetic dataset

Thank you for listening

Quiz

- Q1. Q2.