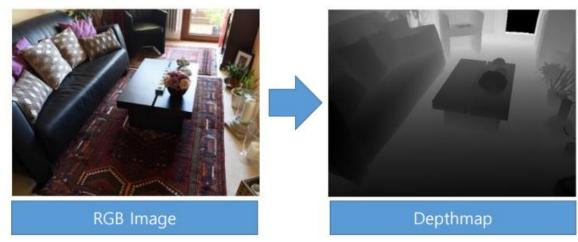
Deep Multi-task Attribute-driven Ranking for Fine-grained Sketch-based Image Retrieval ,BMVC 2016

Paper presentation 2018. 11 .22 Taeun Hwang (황태운)

CS688: Web-scale image retrieval

Review presentor: Taehee kim

 Evaluation of CNN-based Single-Image Depth Estimation Methods, CVPR 18



- In depthmap estimation about single image
 - Introduce a set of new error metrics
 - Present a new dataset from laser scan
 - Evaluate state-of-art methods

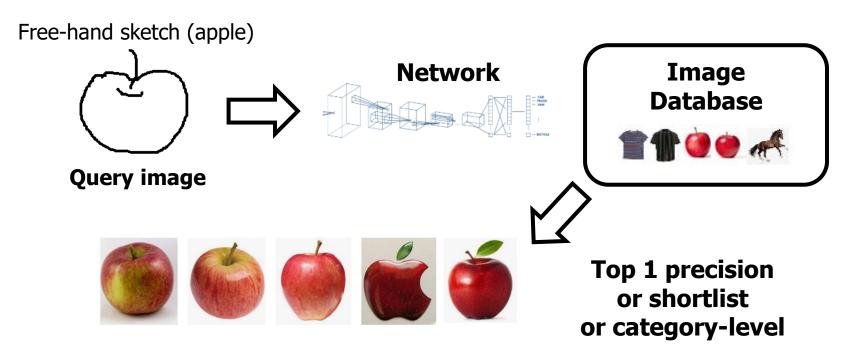
Contents

- Introduction
- Method
- Experiment & result

Introduction

Introduction

Sketch-Based Image Retrieval(SBIR)



- People can quickly draw abstractly
- Sketch : have visual details

Introduction

Category-level SBIR vs Fine-grained SBIR

From heechan's slide

Category-level SBIR

vs.

'That Shoe'

'That Shoe'

fine-grained SBIR

Just find category
→ More clearly and easily using "text" not "SBIR"

Find more detail

→ Top 1 or Top 10 precision

Purpose of this paper

- Improve performance of
 - Fine-grained Sketch-based image retrieval
 - What meaningful object properties in sketch?
 - Exploits Semantic attributes
 - Ex) Shoe is high-heeled?
 Shoe has Shoelace?

- •Ex) Chair has arm-rest?
- Learning Semantic attributes

Method

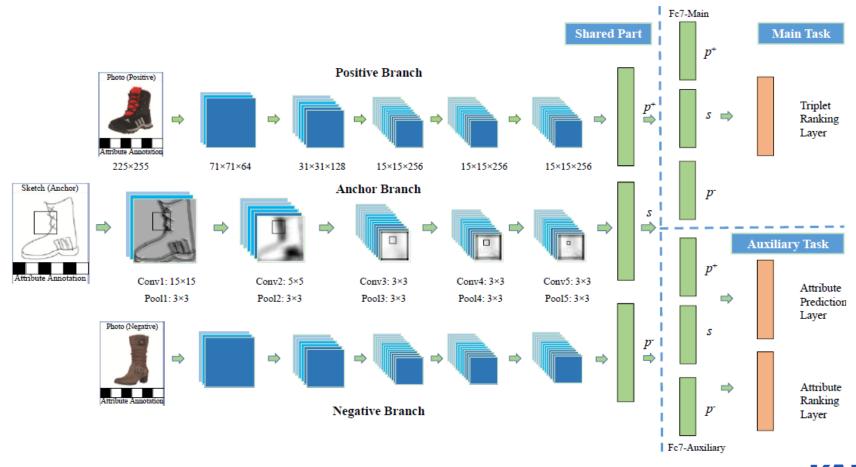
Method

- Perform 3-task deep learning
 - Retrieval by fine-grained ranking
 - Attribute prediction
 - Example of Attribute : Shoe is high-heeled?
 - Attribute-level ranking

- Predicting semantics attribute and using this in the ranking procedure
 - > Retrieval results to be more **semantically relevant**

Network architecture

Multi-task: Do 3 tasks



Multi-tasks

1. Main Triplet Ranking Task

Main task: sketch-photo ranking

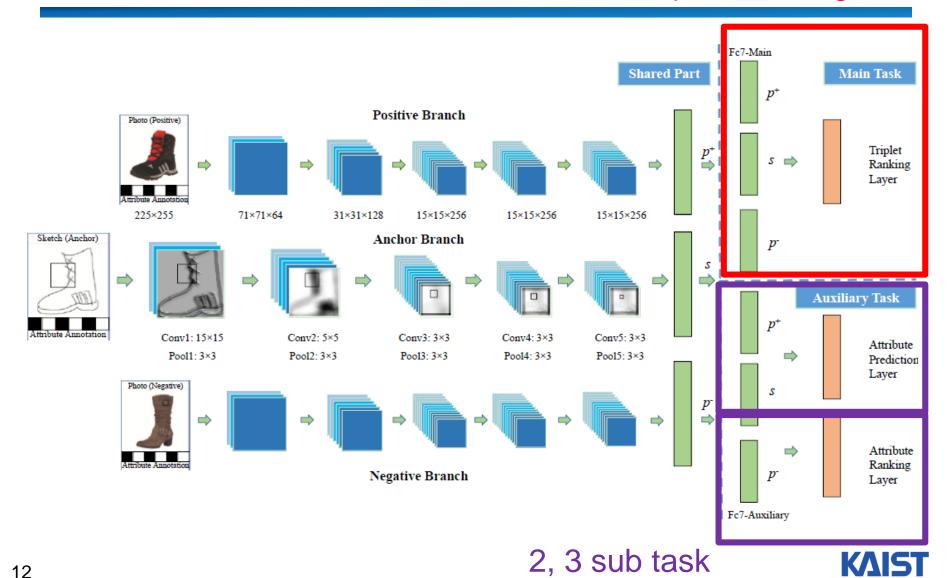
2. Attribute prediction Task (subtask)

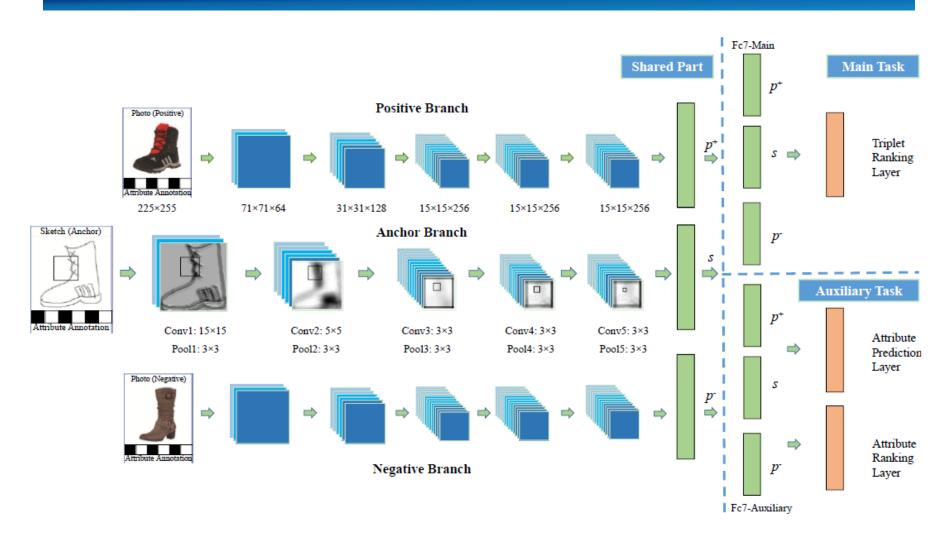
- Predict semantic attributes
- Example of attribute
 - Shoe is high-heeled
 - Chair has arm-rest

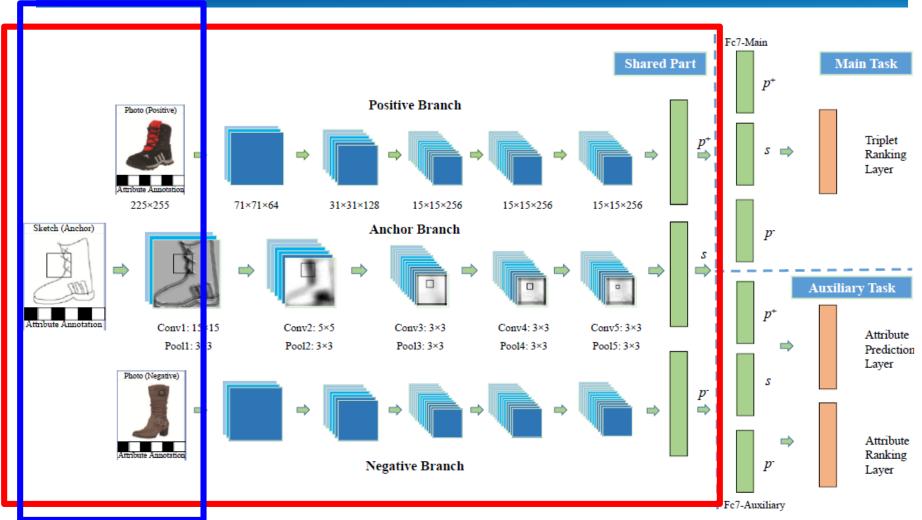
3. Attribute Ranking Task (subtask)

Attribute-level sketch-photo matching

1. Main Triplet Ranking Task





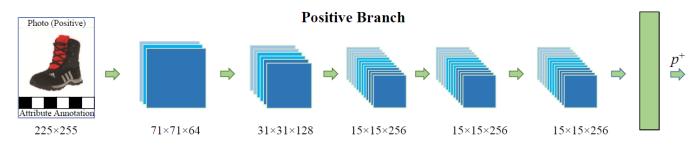


Task-Shared part

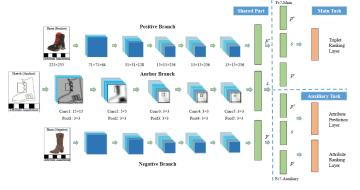
Input tuple: Sketch, P, N

Task-Shared part

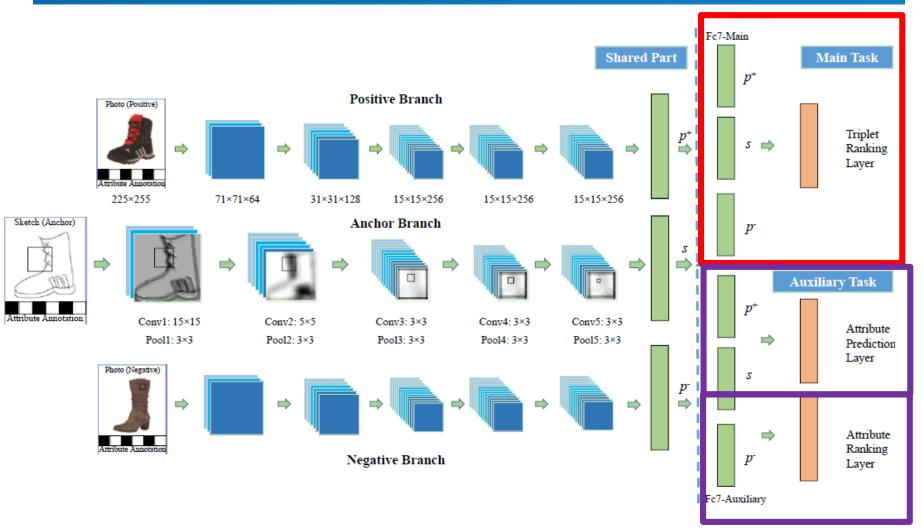
- There are Three branch
 - For Sketch, positive image, negative image



- Each branch consists of five convolution layers with max pooling + a fully-connected layer
 - Make feature map



1. Main Triplet Ranking Task

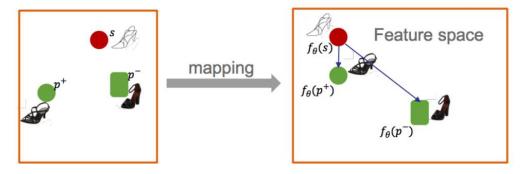


+ FC layer with dropout and RELU

KAIST

1. Main Triplet Ranking Task

- Trained by supervision in the form of triplet tuples
- Goal to learn : p+ is ranked above the p-



Loss function : triplet ranking loss

$$L_{\theta}\left(s, p^{+}, p^{-}\right) = \max\left(0, \Delta + D\left(f_{\theta}\left(s\right), f_{\theta}\left(p^{+}\right)\right) - D\left(f_{\theta}\left(s\right), f_{\theta}\left(p^{-}\right)\right)\right)$$

Triplet tuple instance:
Sketch s
Positive photo p+
Negative photo p-

f : feature
D : euclidean distance
Δ : margin

2. Attribute prediction Task

- Predict semantics attributes (both sketch, image)
- Assume N different semantic attributes t
 - Training tuples for sketch : $\{s, t_1^s \dots t_N^s\}$
- Attribute prediction loss : cross-entropy between attribute label and prediction f

$$L_{p}(s,t^{s}) = -\frac{1}{N} \sum_{n=1}^{N} \left[t_{n}^{s} \log f_{\theta,n}^{ap}(s) + (1 - t_{n}^{s}) \log \left(1 - f_{\theta,n}^{ap}(s) \right) \right]$$

similar for p+ and p- photos

Trained simultaneously with the 1. main task

3. Attribute Ranking Task

- 2. Attribute prediction task: would not be used in test-time
 - Also, not use Attributes
- But Attributes are good information for SBIR
- So, Attributes similarity between sketch and p+ used as a loss function

$$L_a\left(s, p^+, p^-\right) = H\left(f_{\theta}^{ap}\left(s\right), f_{\theta}^{ap}\left(p^+\right)\right)$$

H: cross-entropy

Multi-task Training and Testing

Overall loss function for multi-task training

$$L(s, p^{+}, p^{-}) = L_{\theta}(s, p^{+}, p^{-}) + \lambda_{a}L_{a}(s, p^{+}, p^{-}) + \lambda_{s}L_{p}(s, t^{s}) + \lambda_{p^{+}}L_{p}(p^{+}, t^{p^{+}}) + \lambda_{p^{-}}L_{p}(p^{-}, t^{p^{-}}) + \lambda_{\theta} \|\theta\|_{2}^{2}$$

weight hyper parameters $\lambda = (\lambda_a, \lambda_s, \lambda_{p^+}, \lambda_{p^-})$

- In test-time
 - Given query sketch s, the similarity of each image p in gallery is

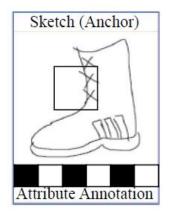
$$R_{s}(s,p) = D(f_{\theta}(s), f_{\theta}(p)) + \lambda_{a}H(f_{\theta}^{ap}(s), f_{\theta}^{ap}(p))$$

D: euclidean distance

H: cross-entropy

Attribute-based sampling Strategy

- Staged model pre-training strategy
- Attribute-based sampling Strategy
 - Triplet generation
 - Triplet sampling



Experiment & result

Experiments

- Training and Evaluation Data
 - 304 sketch-photo pairs of shoes
 - 200 sketch-photo pairs of chairs
 - Same dataset used in sketch-me-that-shoe
- Evaluation metrics
 - Top-K retrieval accuracy, K=1 K=10

Result

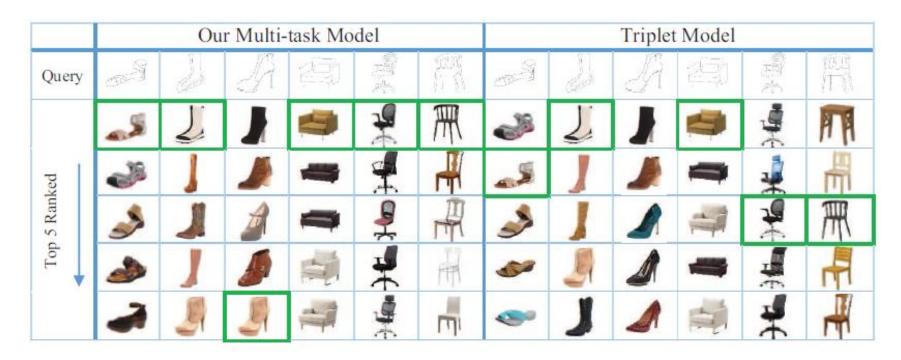


Figure 3: Retrieval results of our proposed method, compared with that of [19].

Triplet Model : Sketch me that shoe, CVPR 16

Result

Compare to other retrieval methods

Table 1: Comparative results against state of the art retrieval performance.

Shoe Dataset	top 1	top 10	trip-acc	Chair Dataset	top 1	top 10	trip-acc
BoW-HOG + rankSVM	17.39%	67.83%	62.82%	BoW-HOG + rankSVM	28.87%	67.01%	61.56%
Dense-HOG + rankSVM	24.35%	65.22%	67.21%	Dense-HOG + rankSVM	52.57%	93.81%	68.96%
ISN Deep + rankSVM	20.00%	62.61%	62.55%	ISN Deep + rankSVM	47.42%	82.47%	66.62%
3DS Deep + rankSVM	5.22%	21.74%	55.59%	3DS Deep + rankSVM	6.19%	26.80%	51.94%
Triplet model [19]	39.13%	87.83%	69.49%	Triplet model [19]	69.07%	97.94%	72.30%
Ours	50.43%	91.30%	70.59%	Ours	78.35%	98.97 %	73.13 %

Comparison of w/o Attribute tasks usage

Table 2: Contribution of the proposed attribute side tasks.

Shoe Dataset	top 1	top 10	trip-acc	Chair Dataset	top 1	top 10	trip-acc
Ours - AP - AR	37.39%	82.61%	66.57%	Ours - AP - AR	50.52%	91.75%	69.62%
Ours - AR	45.22%	87.83%	72.37 %	Ours - AR	72.16%	98.97%	72.00%
Ours - AP	44.35%	86.96%	71.34%	Ours - AP	72.16%	98.97%	72.10%
Ours	50.43%	91.30%	70.59%	Ours	78.35%	98.97 %	73.13%

End

QnA

