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Review presentor: Taehee kim

● Evaluation of CNN-based Single-Image 
Depth Estimation Methods, CVPR 18

● In depthmap estimation about single image
● Introduce a set of new error metrics

● Present a new dataset from laser scan

● Evaluate state-of-art methods
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● Introduction
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Introduction

● Sketch-Based Image Retrieval(SBIR)

● People can quickly draw abstractly

● Sketch : have visual details

Free-hand sketch (apple)

Query image

Image
Database

Network

Top 1 precision
or shortlist

or category-level
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Introduction

● Category-level SBIR vs Fine-grained SBIR

Just find category

More clearly and easily

using “text” not “SBIR”

Find more detail

 Top 1 or Top 10 precision

From heechan’s slide
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Purpose of this paper

● Improve performance of

Fine-grained Sketch-based image retrieval
● What meaningful object properties in sketch?

● Exploits Semantic attributes

●Ex) Shoe is high-heeled?

Shoe has Shoelace?

●Ex) Chair has arm-rest?

● Learning Semantic attributes
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● Method
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● Perform 3-task deep learning 
● Retrieval by fine-grained ranking

● Attribute prediction

●Example of Attribute : Shoe is high-heeled?

● Attribute-level ranking

● Predicting semantics attribute and using this 
in the ranking procedure

 Retrieval results to be more semantically relevant

Method
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Network architecture

● Multi-task : Do 3 tasks
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Multi-tasks

● 1. Main Triplet Ranking Task
● Main task : sketch-photo ranking

● 2. Attribute prediction Task (subtask)
● Predict semantic attributes

● Example of attribute

●Shoe is high-heeled

●Chair has arm-rest

● 3. Attribute Ranking Task (subtask)
● Attribute-level sketch-photo matching
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Overall network 1. Main Triplet Ranking Task

2, 3 sub task
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Overall network
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Overall network

Task-Shared partInput tuple : Sketch, P, N
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● There are Three branch
● For Sketch, positive image, negative image

● Each branch consists of five convolution layers 
with max pooling + a fully-connected layer
● Make feature map

Task-Shared part
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Overall network 1. Main Triplet Ranking Task

2, 3 sub task+ FC layer with dropout and RELU
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● Trained by supervision in the form of triplet tuples

● Goal to learn : p+ is ranked above the p-

● Loss function : triplet ranking loss

1. Main Triplet Ranking Task

Triplet tuple instance : 

Sketch s

Positive photo p+

Negative photo p-

f : feature

D : euclidean distance

Δ : margin
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2. Attribute prediction Task

● Predict semantics attributes (both sketch, image)

● Assume N different semantic attributes t
● Training tuples for sketch :

● Attribute prediction loss : cross-entropy

between attribute label and prediction f

● Trained simultaneously with the 1. main task

similar for p+ and p- photos
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3. Attribute Ranking Task

● 2. Attribute prediction task : would not be used in 
test-time
● Also, not use Attributes

● But Attributes are good information for SBIR

● So, Attributes similarity between sketch and p+ 
used as a loss function

H: cross-entropy



20

● Overall loss function for multi-task training

● In test-time
● Given query sketch s, the similarity of each image p in 

gallery is

Multi-task Training and Testing

D : euclidean distance

H : cross-entropy
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Attribute-based sampling Strategy

● Staged model pre-training strategy

● Attribute-based sampling Strategy
● Triplet generation

● Triplet sampling
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● Experiment & result
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Experiments

● Training and Evaluation Data
● 304 sketch-photo pairs of shoes

● 200 sketch-photo pairs of chairs

● Same dataset used in sketch-me-that-shoe

● Evaluation metrics
● Top-K retrieval accuracy, K=1 K=10
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● Triplet Model : Sketch me that shoe, CVPR 16

Result
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Result

● Compare to other retrieval methods

● Comparison of w/o Attribute tasks usage
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End

● QnA


