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Review: Song et al. (BMVC 2016)

¢ Fine-grained sketch-based image retrieval (SBIR)

— Retrieval by fine-grained ranking (main task): triplet ranking

— Attribute prediction (auxiliary task): predict semantic attributes
that belong to sketches and images

— Attribute-level ranking (another auxiliary task): compare attributes
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Image reproduced from Song et al. 2016. “Deep multi-task attribute-driven ranking for fine-grained sketch-based
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Motivation

¢ Raw feature vectors are very long (cf. PA2)

— ...which is why we want to use specialized binary codes

¢ Binary codes for image search (cf. lecture slides)

— ...Should be of reasonable length
— ...and provide faithful representation

¢ Important criteria
— Independence: bits should be independent to each other
— Balance: each bit should divide the dataset into equal halves



Background: Supervised codes (1/3)

¢ Liu etal. (CVPR 2016): pairwise supervision

Fully
Training Connected
Images Max
Pooling Average
3x3x32/2 Pooling
3x3x32/2

Convl N N
5x5x32 /1 \ : :
Query \ .
Image r—-v 5)(9522\52” o ons \. /;7::_”/"’ =) 2 on EEE
e L Jg Binary-like
sl Outputs
1 o .
Pairwise loss function L,.(by, bo, y) 25(1 —y)||b1 — ba|3 Similar images—similar codes
(Hamming distance approximated +1y max(m — ||by — b2||% 0) Dissimilar images—different codes
using Euclidean distance) 2 ’

+a(|| |b1| — 1|]1 + || [b2] — 1||1) Regularization (+1 or —1)

4 Image reproduced from Liu et al. 2016. “Deep supervised hashing for fast image retrieval”



Background: Supervised codes (2/3)

¢ Laietal. (CVPR 2015): triplet supervision
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5 Image reproduced from Lai et al. 2015. “Simultaneous feature learning and hash coding with deep neural networks”



Background: Supervised codes (3/3)

¢ Jain et al. (ICCV 2017): point-wise supervision,
guantized output
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6 Image reproduced from Jain etal. 2017. “SuBiC: A supervised, structured binary code for image search”



Background: Deep Hashing

¢ Liong et al. (CVPR 2015)

— Fully connected layers

— Binary hash code B is constructed from the output value of the
last layer, HM, as follows: B = sgn HM

— Note that “binary” means 1 here
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Introduction

¢ Binary Deep Neural Network (BDNN)
— Real binary codes (how?)
— Real independence loss (not relaxed/approximated)
— Real balance loss (again, not relaxed/approximated)

— Reconstruction loss (like autoencoders!)

¢ Unsupervised (UH-) and supervised (SH-) variants



Overview

¢ “Unsupervised Hashing with BDNN (UH-BDNN)”
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9 Image reproduced from Do et al. 2016. “Learning to Hash with Binary Deep Neural Network™
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Optimization

¢ Alternating optimization with respect to (W, ¢) and B
— Network parameters (weight W(), bias c®)) using L-BFGS
— Binary code (B) using discrete cyclic coordinate descent

¢ Note that, ideally, H™1) should be equal to B
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Deep Hashing vs. UH-BDNN
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Using class labels

¢ “Supervised Hashing with BDNN (SH-BDNN)”
— No reconstruction layer

irwise label g 1 if x; and x; are same class
— Uses pairwise label matrix S =\ _q if x; and x; are not same class

¢ Hamming distance between binary codes should
correlate with the pairwise label matrix S

Classification loss Regularlzatlon Ioss
- [ S o S VY (n) ’
ain, 7= oo [ TEO 8| ZH HY - B
Equality loss
TN [ p— DM ey 2
_|__3 _H( )(H( ))T—I + 22 H( )1m><1
2 ||lm 2m
Independence loss Balance loss

st. Be {—1,1}/*™



Results (1/2)

Evaluation of Unsupervised Hashing
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Figure 1: mAP comparison between UH-BDNN and the state of the art.

CIFARI10 MNIST SIFT1IM

L 8 (16 | 24 | 32 | 8 |16 | 24 | 32 | 8 | 16 | 24 | 32

UH-BDNN|0.55(5.79(22.14|18.35(0.53|6.8029.38|38.50{4.80|25.2062.20|80.55
BA 0.55(5.65(20.23|17.00(0.51|6.44 (27.65|35.29(3.85|23.19|61.35|77.15
ITQ 0.54|5.05(18.82|17.76|0.51|5.87(23.92|36.35|3.19(14.07|35.80|58.69
SH 0.39(4.23|14.60(15.22|0.43|6.50|27.08|36.69|4.67|24.82|60.25|72.40
SPH 0.43(3.45(13.47(13.67]0.44|5.02|22.24|30.80|4.25|20.98|47.09(66.42
KMH 0.53|5.49(19.55|15.90(0.50(6.36 |25.68|36.24|3.74|20.74|48.86|76.04

Table 1: Precision at Hamming distance r = 2 comparison between UH-BDNN and the state of the art.

13 Image reproduced from Do et al. 2016. “Learning to Hash with Binary Deep Neural Network”




Results (2/2)

Evaluation of Supervised Hashing
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Figure 2: mAP comparison between SH-BDNN and the state of the art.

CIFAR10 MNIST

L 8 16 | 24 | 32 8 16 | 24 | 32

SH-BDNN [54.12(67.32|69.36|69.62|84.26|94.67|94.69(95.51
SDH 31.60(62.23|67.65(67.63|36.49(|93.00(93.98|94.43
ITQ-CCA |49.14|65.68(67.47|67.19(54.35|79.99|84.12(84.57
KSH 44.81(64.08/67.01(65.76|68.07|90.79(92.86 (92.41
BRE 23.84(41.11|47.98|44.89(37.67|69.80(83.24|834.61

Table 2: Precision at Hamming distance » = 2 comparison between SH-BDNN and the state of the art.

14 Image reproduced from Do et al. 2016. “Learning to Hash with Binary Deep Neural Network”
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Discussion

¢ The framework’s capability of generating both
unsupervised and supervised binary codes using nearly
Identical architectures would be useful for many
applications

¢ The fact that the optimization algorithms used in BDNN
(especially L-BFGS) do not fully benefit from the
amount of parallelism available on modern machines
might result in suboptimal utilization of computing
resources



