Image Search with Deep Learning

Sung-Eui Yoon (윤성의)

Class Objectives are:

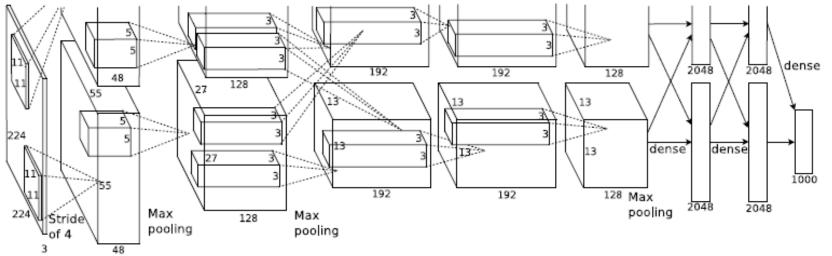
CNN based representations

- Consider different regions within or outside the end-to-end training
- Different loss functions
- Used as data cleaning methods

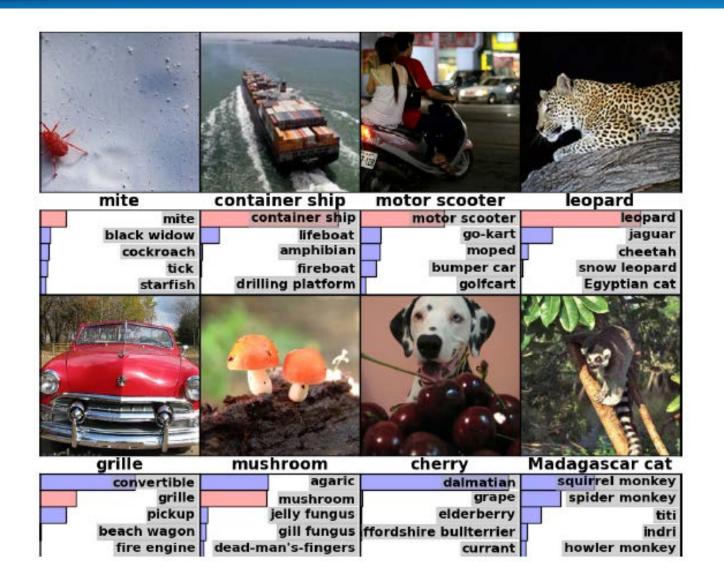
ImageNet Classification with Deep Convolutional Neural Networks [NIPS 12]

Rekindled interest on CNNs

- Use a large training images of 1.2 M labelled images
- Use GPU w/ rectifying non-linearities and dropout regularization

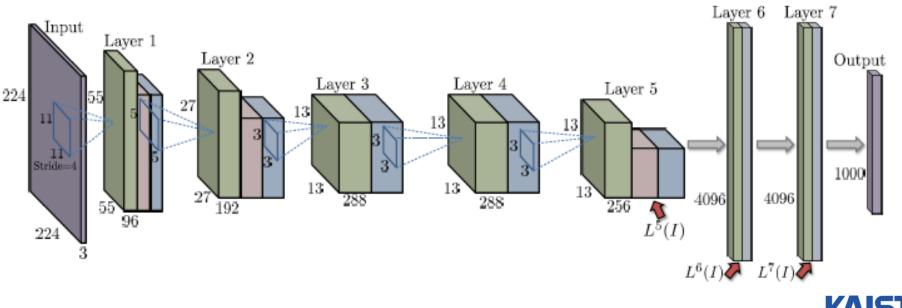


Tested on ILSVRC-2010



Neural Codes for Image Retrieval [ECCV 14]

- Uses top layers of CNNs as high-level global descriptors (Neural Codes) for image search
- Shows higher accuracy with re-training



Sum Pooling and Centering Priors

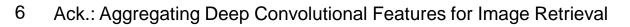
- Inspired by many prior aggregated features (e.g., BoW)
 - Use convolution layers as local features as dense SIFTs
- Aggregation

$$\psi_1(I) = \sum_{y=1}^H \sum_{x=1}^W f_{(x,y)}$$

- Simply sums those local features or
- Considers centering priors w/ varying weights

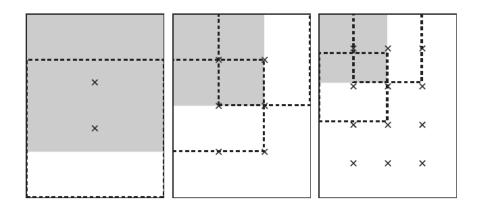
1

Method	Holidays	Oxford5K (full)	Oxford105K (full)	UKB
Fisher vector, k=16	0.704	0.490		—
Fisher vector, k=256	0.672	0.466	_	_
Triangulation embedding, k=1	0.775	0.539	_	—
Triangulation embedding, k=16	0.732	0.486	_	—
Max pooling	0.711	0.524	0.522	3.57
Sum pooling (SPoC w/o center prior)	0.802	0.589	0.578	3.65
SPoC (with center prior)	0.784	0.657	0.642	3.66



R-MAC: Regional Maximum Activation of Convolutions

- Use maximum activation of convolutions for translation invariance
- Consider uniformly generated regions with different scales, and sum their features



7 Ack.: PARTICULAR OBJECT RETRIEVAL WITH INTEGRAL MAX-POOLING

Approximate Integral Max-Pooling

Approximate the maximum with L_p norm

$$\tilde{\mathbf{f}}_{\mathcal{R},i} = \left(\sum_{p \in \mathcal{R}} \mathcal{X}_i(p)^{\alpha}\right)^{\frac{1}{\alpha}} \approx \max_{p \in \mathcal{R}} \mathcal{X}_i(p) = \mathbf{f}_{\mathcal{R},i},$$

- Need to sum values of many different regions
 - Use integral images, summed-area table, of features
 - Do not need to extract features again from regions

• $\alpha = 10$

Post-Processing

- Once a shortlist is identified, various postprocessing can be adopted
 - Localization: refine box coordinates from initial responses
 - Reranking and query expansion can be performed

Fine-Tuning for Search

- Use CNN features that were trained with ImageNet
- Retraining with a task-specific dataset achieve higher accuracy
 - Can lower accuracy when using dissimilar datasets

Fine-Tuning for Search

Descriptor	Dime	Orteral	Orferd 105V	TT-1: Jacon	UVD	
Descriptor	Dims	Oxford	Oxford 105K	Holidays	UKB	
Fisher+color[7]	4096			0.774	3.19	
VLAD+adapt+innorm[2]	32768	0.555		0.646	—	
Sparse-coded features[6]	11024			0.767	3.76	
Triangulation embedding[9]	8064	0.676	0.611	0.771	3.53	
Neural codes trained on ILSVRC						
Layer 5	9216	0.389		0.690*	3.09	
Layer 6	4096	0.435	0.392	0.749^{*}	3.43	
Layer 7	4096	0.430		0.736^{*}	3.39	
After retraining on the Landmarks dataset						
Layer 5	9216	0.387		0.674^{*}	2.99	
Layer 6	4096	0.545	0.512	0.793^{*}	3.29	
Layer 7	4096	0.538	—	0.764^{*}	3.19	
After retraining on turntable views (Multi-view RGB-D)						
Layer 5	9216	0.348		0.682^{*}	3.13	
Layer 6	4096	0.393	0.351	0.754^{*}	3.56	
Layer 7	4096	0.362		0.730^{*}	3.53	

Landmark dataset has similar images to Oxford

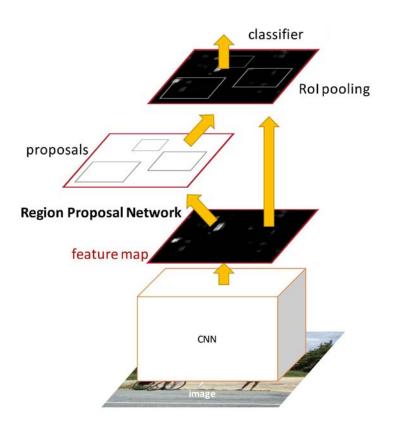
Dimension Reduction

CNN features (4096D) are robust to PCA compression

Maintain accuracy by 256 D

Dimensions	16	32	64	128	256	512
Oxford						
Layer 6	0.328	0.390	0.421	0.433	0.435	0.435
Layer 6 + landmark retraining	0.418	0.515	0.548	0.557	0.557	0.557
Layer 6 + turntable retraining	0.289	0.349	0.377	0.391	0.392	0.393

Localization: Faster R-CNN



Insert a **Region Proposal Network (RPN)** after the last convolutional layer

RPN trained to produce region proposals directly; no need for external region proposals!

After RPN, use Rol Pooling and an upstream classifier and bbox regressor just like Fast R-CNN

Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015

Slide credit: Ross Girschick

Faster R-CNN: Region Proposal Network

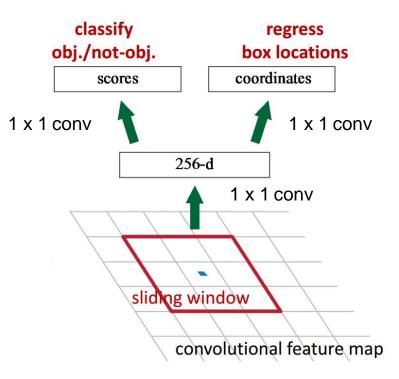
Slide a small window on the feature map

Build a small network for:

- · classifying object or not-object, and
- regressing bbox locations

Position of the sliding window provides localization information with reference to the image

Box regression provides finer localization information with reference to this sliding window



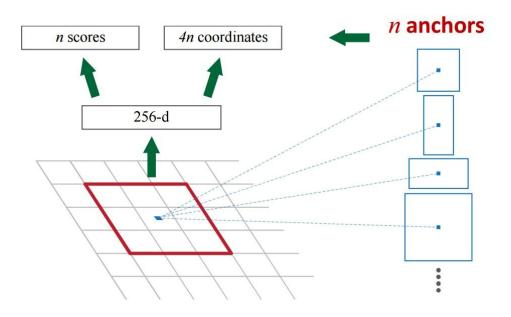
Faster R-CNN: Region Proposal Network

Use N anchor boxes at each location

Anchors are **translation invariant**: use the same ones at every location

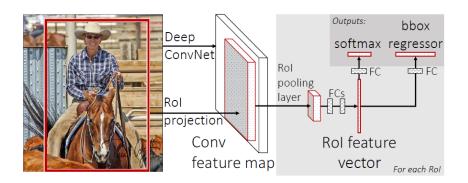
Regression gives offsets from anchor boxes

Classification gives the probability that each (regressed) anchor shows an object



Faster R-CNN: Results

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 seconds	2 seconds	0.2 seconds
(Speedup)	1x	25x	250x
mAP (VOC 2007)	66.0	66.9	66.9



Fast R-CNN: rely upon external region proposal

Image Classification and Retrieval are ONE [ICMR 15]

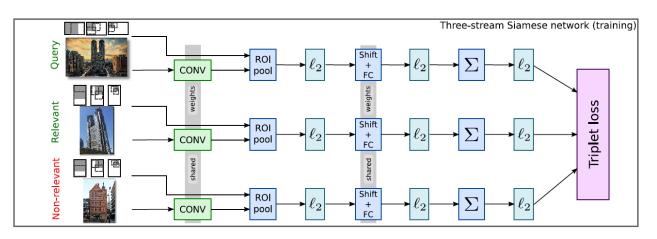
- Handle the classification and search in a unified framework
 - Uses region proposals
 - Uses nearest neighbor search for both
 problems
 QUERY
 Search by "natural scene"

Deep Image Retrieval:

Learning global representations for image search

• Learn features for image retrieval

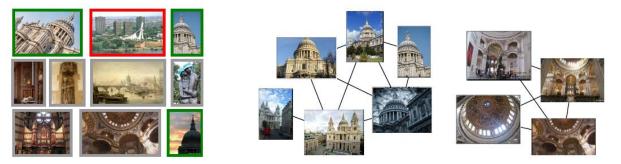
- Use the triplet loss, i.e., ranking loss, not classification loss
- Update the CONV and Shift+FC (implementing PCA)



• Use RPN instead of R-MAC

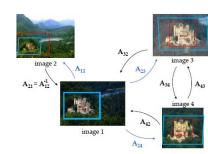
Data Cleaning

- Use image search with SIFT and spatial verification for clusters
 - Filter out noisy data, i.e., unconnected data



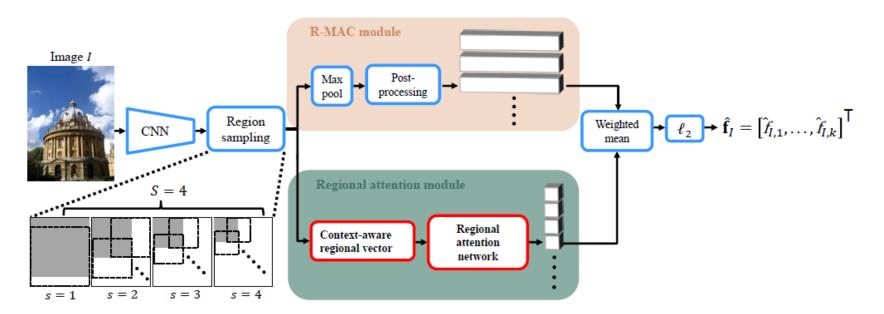
Train RPN with bounding boxes (containing matched key points)

 Refine them with multiple image pairs



Regional Attention Based Deep Feature for Image Retrieval

- Apply the attention (or saliency) to regional features for image retrieval
 - Train attention weights based on classification



Class Objectives were:

CNN based representations

- Consider different regions within or outside the end-to-end training
- Different loss functions
- Used as data cleaning methods

