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Class Objectives

e Study neural nets, especially, convolution
neural nets (CNNSs)

e See Its applications to computer vision
problems and image search
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Discriminative classifiers
(linear classifier)

category models
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Support vector machines

* Find hyperplane that maximizes the margin between the positive and
negative examples

\ o Support vectors: X, -W+b=+=I
Distance between point X; W+b
and hyperplane: | w
o
o Margin = 2/ ||w]|

Solution:  w = Z;‘ a.V.X,

Support vectors Classification function (decision boundary):

Margin

W X+ b = Zz_a'iyixj-x +b

Credit slide: 5. Lazebnik
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Support vector machines

* Classification

W x|+ b = Zz_a’iyixj X + b
AN

Test point

if xX-w+hb>0—> class 1
if X-w+b<0— class 2

Margin

C. Burges, A Tutonal on Support Vector Machines for Pattern Recognifion, Data Mining and Knowledge Discovery, 1998




Nonlinear SVMs

e Datasets that are linearly separable work out great:
— .@_‘-I_@_. ,
0 1’

e But what if the dataset is just too hard?
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¢ We can map it to a higher-dimensional space:

Slide credit: Andrew Moore




Nonlinear SVMs

* General idea: the original input space can always be mapped
to some higher-dimensional feature space where the
training set is separable:
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High-Level Messages

e Deep neural nets provide low-level and
high-level features

e We can use those features for image search

e Achieve the best results in many computer
vision related problems
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High-Level Messages

e Many features and codes
are available

e Caffe [Krizhevsky et al., NIPS
2012]

e Very deep convolutional
networks [Simonyan et al.,
ICLR 15]; using up to 19
layers

e Deep Residual Learning [He
et al., CVPR 16]; using up to
152 layers

e Model Zoo

github.com/BVLC/caffe/wiki/
Model-Zoo
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High-Level Messages

e Perform the end-to-end optimization w/
lots of training data

e Aims not only features, but the accuracy of any
end-to-end systems including image search
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Deep Learning for Vision

Adam Coates

Stanford University
(Visiting Scholar: Indiana University, Bloomington)




What do we want ML to do?

 Given image, predict complex high-level patterns:

Object recognition Detection Segmentation

[Martin et al., 2001]




How I1s ML done?

e Machine learning often uses hand-designed feature
extraction.

Feature Extraction Machine Learning «“ ”
Algorithm Cat”?

Prior Knowledge,
Experience




“Deep Learning”

* Deep Learning

e Train multiple layers of features from data.

* Try to discover useful representations

More abstract representation

Low-level Mid-level High-level

Classifier
Features Features Features




“Deep Learning”

e Why do we want “deep learning”?
— Some decisions require many stages of processing.

— We already hand-engineer “layers” of
representation.

— Algorithms scale well with data and computing
power.

* |n practice, one of the most consistently successful
ways to get good results in ML.




Have we been here before?

» Yes: Basic ideas common to past ML and
neural networks research.

> No.

— Faster computers; more data.

— Better optimizers; better initialization schemes.

e “Unsupervised pre-training” trick
[Hinton et al. 2006; Bengio et al. 2006]

— Lots of empirical evidence about what works.

e Made useful by ability to “mix and match” components.
[See, e.g., Jarrett et al., ICCV 2009]




Real impact

e DL systems are high performers in many tasks
over many domains.
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Supervised Learning

e Given labeled training examples:
X={(zD y):i=1,...,m}

e Forinstance: x') = vector of pixel intensities.
yl) = object class ID.

~

255
- Y EL
~ 93 f(X) y=1 (“Cat”)
._ 87
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e Goal: find f(x) to predict y from x on training data.
— Hopefully: learned predictor works on “test” data.




Logistic Regression

e Simple binary classification algorithm
— Start with a function of the form:1

) — (0T ) —
f(@;0) =0(0 z) T op(—07z) .t

— Interpretation: f(x) is probability thaty =1//_

— Find choice of 6 that minimizes objective:

— . (i) — (4).
L(0) ;1{9 1}log(f(z';6))+ P(y(i) _ 0|:L‘(i)

o ffy=1 {y® =0} log(1 — f(z?;0))
cost

P(y(® = 1]z

|
0y ~1  From Ng's slide




Optimization

e How do we tune 6 to minimize £(0)?

 One algorithm: gradient descent
— Compute gradient

VoL (6 Z D (g — £z, 0))

— Follow gradient “downhill”:
0 =6 — nVeLl(h)

e Stochastic Gradient Descent (SGD): take step
using gradient from only small batch of examples.

— Scales to larger datasets. [Bottou & LeCun, 2005]




Features

 Huge investment devoted to building application-
specific feature representations.

Super-pixels
[Gould et al., 2008; Ren & Malik, 2003]

l-k!lll.""'

I u,mms

Object Bank [Li et al., 2010]
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Extension to neural networks

SUPERVISED
DEEP LEARNING




Basic idea

 \We saw how to do supervised learning when
the “features” ¢(x) are fixed.

— Let’s extend to case where features are given by
tunable functions with their own parameters.

P(y = 1|z) = f(x;0,W) = o(0" o(Wx))

Inputs are “features”---one

Outer part of function is same feature for each row of W:

as logistic regression. o(wix)

o(wax)

o(wg )




Basic idea

* To do supervised learning for two-class
classification, minimize:

LOW) = — il{y@ = 1}log(f(«";6,W))+

1{y" = 0} log(1 — f(z'";0,W))
e Same as logistic regression, but now f(x) has

7

multiple stages (“layers”, “modules”):
f(2;:0,W) =0(0"o(Wa))

r— o(Wzx)—h— (8" h)—f

Intermediate representation (“features”) Prediction for P(y — 1|$)




Neural network

* This model is a sigmoid “neural network”:

L6, W)

“Neuron” \
Flow of computation.
“Forward prop”
Wi




Neural network

Must learn multiple stages

of internal “representation”.
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e Can stack up several layers:




Back-propagation

e Minimize: -
LO,W)=-> 1{y" =1}log(f(=;0,W))+
1{y") = 0}log(1 — f(z'");0,W))
* To minimize £(»,wW)we need gradients:

VoL(0,W) and Vi L(0, W)
— Then use gradient descent algorithm as before.

 Formula for Vo£(6,W)can be found by hand
(same as before); but what about W?

— Beyond the scope of this course




Back-propagation

e Can re-apply chain rule to get gradients for all
intermediate values and parameters.

e > h—> T —»f [:(9) W)
W o(Wx) 9 a(f'h)
V. L Vhﬁ D
T J J —V L
Vwﬁ <« ; Vgﬁ‘— / f

“Backward” modules for each forward stage.




Training Procedure

e Collect labeled training data
— For SGD: Randomly shuffle after each epoch!

X={(zD y):i=1,...,m}

e For a batch of examples:
— Compute gradient w.r.t. all parameters in network.
Ay :=VoL(6, W)
AW ZZVW[,(Q, W)
— Make a small update to parameters.
0 :=0 — UQAQ

W =W — UWAW
— Repeat until convergence.




Training Procedure

e Historically, this has not worked so easily.
— Non-convex: Local minima; convergence criteria.

— Optimization becomes difficult with many stages.
e “Vanishing gradient problem”

— Hard to diagnose and debug malfunctions.

e Many things turn out to matter:
— Choice of nonlinearities.
— Initialization of parameters.
— Optimizer parameters: step size, schedule.




Nonlinearities

e Choice of functions inside network matters.
— Sigmoid function turns out to be difficult.
— Some other choices often used:

tanh(z) abs(z) RelLu(z) = max{0, z}

S = N

“Rectified Linear Unit”
- Increasingly popular.

[Nair & Hinton, 2010]




Initialization

e Usually small random values.

— Try to choose so that typical input to a neuron avoids saturating / non-
differentiable areas.

1“/
S

A 4

e I|nitialization schemes for particular units:
— tanh units: Unif[-r, r]; sigmoid: Unif[-4r, 4r].

r = +/6/(fan-in + fan-out)
See [Glorot et al., AISTATS 2010]

e Use features from unsupervised learning




Application

SUPERVISED DL FOR
VISION




Working with images

 Major factors:

— Want to have “selective” features and “invariant”
features.

— Try to exploit knowledge of images to accelerate
training or improve performance.

 Generally try to avoid wiring detailed visual
knowledge into system --- prefer to learn.




Local connectivity

 Neural network view of single neuron:

Extremely large number of connections.
‘ —>More parameters to train.

D —>Higher computational expense.
// \ —>Turn out not to be helpful in practice.
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Local connectivity

 Reduce parameters with local connections.
— Weight vector is a spatially localized “filter”.




Local connectivity

 Sometimes think of neurons as viewing small
adjacent windows.
— Specify connectivity by the size (“receptive field” size)
and spacing (“step” or “stride”) of windows.

e Typical RF size =5 to 20
e Typical step size = 1 pixel up to RF size.

h _ WZ Rows of W are sparse.
Only weights connecting to inputs

in the window are non-zero.




Local connectivity

e Spatial organization of filters means output features

can also be organized like an image.

— X,Y dimensions correspond to X,Y position of neuron

window.

— “Channels” are different features extracted from same
spatial location. (Also called “feature maps”, or “maps”.)

X spatial location

o

1-dimensional example: , ,

JAVAVAY

1D input

“Channel” or “map” index




Local connectivity

» We can treat output of a layer like an image and re-use the
same tricks.

X spatial location

K “Channel” or “map” index

1-dimensional example:

JAVAVAN

1D input




Weight-Tying

* Even with local connections, may still have too
many weights.
— Trick: constrain some weights to be equal if we

know that some parts of input should learn same
kinds of features.

— Images tend to be “stationary”: different patches
tend to have similar low-level structure.




Weilght-Tying or
Convolutional Network

» Reduce parameters by making them equal.

X spatial location

(XX
JAYA'AY

1D input

e Each unique filter is spatially convolved with the input to

produce responses for each map. [LeCun et al., 1989; LeCun
et al., 2004]




Pooling

* Functional layers designed to represent invariant features.

e Usually locally connected with specific nonlinearities.

— Combined with convolution, corresponds to hard-wired
translation invariance.

e Usually fix weights to local box or gaussian filter.
— Easy to represent max-, average-, or 2-norm pooling.

h = (Wz“")l/“ Power mean
/
' C ,
O1O70 _C
. (
(O

\T
)

@

@

. . [Scherer et al., ICANN 2010]

[Boureau et al., ICML 2010]
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Contrast Normalization

 Empirically useful to soft-normalize magnitude of
groups of neurons.

— Sometimes we subtract out the local mean first.

z
B VW22 + ¢

[Jarrett et al., ICCV 2009]




Application: Image-Net

e System from Krizhevsky et al., NIPS 2012:
— Convolutional neural network.
— Max-pooling.
— Rectified linear units (ReLu).
— Contrast normalization.
— Local connectivity.
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Application: Image-Net

 Top result in LSVRC 2012: ~85%, Top-5 accuracy.
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More applications

e Segmentation: predict classes of pixels / super-pixels.

= -;:‘-'-”‘ s g "
e Detection: combine classifiers with sliding-window architecture.
— Economical when used with convolutional nets.

Pierre Sermanet (2010) 2>

e Robotic grasping. [Lenz et al., RSS 2013]

http://www.youtube.com/watch?v=f9Cuzql1SkE



http://www.youtube.com/watch?v=f9CuzqI1SkE

PAS3

* Apply binary code embedding and inverted
index to PA2

— k-means or product quantization (PQ) for inverted
index

— Spherical hashing or PQ for binary code
embedding




UNSUPERVISED DL




But what if we have too

few labels to train all
these parameters?

train “features” to

accomplish top-level objective.
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Representation Learning

* |n supervised learning,




without using
representation directly?

Learn a “good”

7’

representation
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top-down supervision?

Representation Learning

e Can we train the “




Representation Learning

* What makes a good representation?

— Distributed: roughly, K features represents more than
K types of patterns.

e E.g., K binary features that can vary independently to
represent 2X patterns.

— Invariant: robust to local changes of input; more
abstract.
e E.g., pooled edge features: detect edge at several locations.

— Disentangling factors: put separate concepts (e.g.,
color, edge orientation) in separate features.

Bengio, Courville, and Vincent (2012)
.




-encoder

Sparse auto

* Train two-layer neural network by minimizing:

1

minimize Z [[Woh(WizW) — 29|12 + X||h(W12)

W1, Wa

1

h(z) = ReLu

2)

(

e Remove “decoder” and use learned features (h).

7

\}
{ s

i
@

@s

OCwSw
W N/ ‘@ﬁw ‘

/
%@% X
%@& I\

Ranzato et al., NIPS 2006]

W/
i

N
%«‘

N YN
Y
S
= =




What features are learned?

* Applied to image patches, well-known result:

EEENE SNENER
=" - Bl SFEES

= FiEdEd
REEIS RENSNE

Sparse auto-encoder Sparse auto-encoder
[Ranzato et al., 2007]




Summary

e Supervised deep-learning

— Practical and highly successful in practice. A
general-purpose extension to existing ML.

— Optimization, initialization, architecture matter!

e Unsupervised deep-learning

— Pre-training often useful in practice.

— Difficult to train many layers of features without
labels.




Resources

Tutorials

Stanford Deep Learning tutorial:
http://ufldl.stanford.edu/wiki

Deep Learning tutorials list:
http://deeplearning.net/tutorials

IPAM DL/UFL Summer School:
http://www.ipam.ucla.edu/programs/gss2012/

ICML 2012 Representation Learning Tutorial

http://www.iro.umontreal.ca/~bengioy/talks/deep-learning-
tutorial-2012.html




References

http://www.stanford.edu/~acoates/bmvc2013refs.pdf

Overviews:

Yoshua Bengio,
“Practical Recommendations for Gradient-Based Training of Deep Architectures’

)

Yoshua Bengio & Yann LeCun,
“Scaling Learning Algorithms towards Al”

Yoshua Bengio, Aaron Courville & Pascal Vincent,
“Representation Learning: A Review and New Perspectives”

Software:
Theano GPU library: http://deeplearning.net/software/theano
SPAMS toolkit: http://spams-devel.gforge.inria.fr/



http://deeplearning.net/software/theano

High-Level Messages

 Deep neural nets provide low-level and high-
level features

— We can use those features for image search

* Achieve the best results in many computer
vision related problems
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