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Class Objectives
● Study neural nets, especially, convolution 

neural nets (CNNs) 

● See its applications to computer vision 
problems and image search
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High-Level Messages
● Deep neural nets provide low-level and 

high-level features
● We can use those features for image search

● Achieve the best results in many computer 
vision related problems

Krizhevsky et al., NIPS 2012
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High-Level Messages
● Many features and codes 

are available
● Caffe [Krizhevsky et al., NIPS 

2012]
● Very deep convolutional 

networks [Simonyan et al., 
ICLR 15]; using up to 19 
layers

● Deep Residual Learning [He 
et al., CVPR 16]; using up to 
152 layers

● Model Zoo
github.com/BVLC/caffe/wiki/
Model-Zoo
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High-Level Messages
● Perform the end-to-end optimization w/ 

lots of training data
● Aims not only features, but the accuracy of any 

end-to-end systems including image search

Krizhevsky et al., NIPS 2012



Deep Learning for Vision

Adam Coates
Stanford University

(Visiting Scholar:  Indiana University, Bloomington)



What do we want ML to do?

• Given image, predict complex high-level patterns:

Object recognition Detection Segmentation

“Cat”

[Martin et al., 2001]



How is ML done?

• Machine learning often uses hand-designed feature 
extraction.

Feature Extraction Machine Learning
Algorithm “Cat”?

Prior Knowledge,
Experience



“Deep Learning”

• Deep Learning
• Train multiple layers of features from data.
• Try to discover useful representations

Low-level
Features

Mid-level
Features

High-level
Features Classifier “Cat”?

More abstract representation



“Deep Learning”

• Why do we want “deep learning”?
– Some decisions require many stages of processing.
– We already hand-engineer “layers” of 

representation.
– Algorithms scale well with data and computing 

power.
• In practice, one of the most consistently successful 

ways to get good results in ML.



Have we been here before?

Yes: Basic ideas common to past ML and 
neural networks research.

No.
– Faster computers;  more data.
– Better optimizers;  better initialization schemes.

• “Unsupervised pre-training” trick 
[Hinton et al. 2006; Bengio et al. 2006]

– Lots of empirical evidence about what works.
• Made useful by ability to “mix and match” components.

[See, e.g., Jarrett et al., ICCV 2009]



Real impact

• DL systems are high performers in many tasks 
over many domains.

Image recognition
[E.g., Krizhevsky et al., 2012]

Speech recognition
[E.g., Heigold et al., 2013]

NLP
[E.g., Socher et al., ICML 2011;

Collobert & Weston, ICML 2008]

[Honglak Lee]



MACHINE LEARNING 
REFRESHER

Crash Course



Supervised Learning

• Given labeled training examples:

• For instance:  x(i) = vector of pixel intensities.
y(i) = object class ID.

• Goal:  find f(x) to predict y from x on training data.
– Hopefully:  learned predictor works on “test” data.

255
98
93
87
…

f(x) y = 1   (“Cat”)



Logistic Regression
• Simple binary classification algorithm

– Start with a function of the form:

– Interpretation:  f(x) is probability that y = 1.

– Find choice of     that minimizes objective:

1

cost
From Ng’s slide



Optimization

• How do we tune     to minimize        ?
• One algorithm:  gradient descent

– Compute gradient:

– Follow gradient “downhill”:

• Stochastic Gradient Descent (SGD):  take step 
using gradient from only small batch of examples.
– Scales to larger datasets.  [Bottou & LeCun, 2005]



Features

• Huge investment devoted to building application-
specific feature representations.

Object Bank [Li et al., 2010] Super-pixels
[Gould et al., 2008;  Ren & Malik, 2003]

SIFT [Lowe, 1999] Spin Images [Johnson & Hebert, 1999]



SUPERVISED
DEEP LEARNING

Extension to neural networks



Basic idea

• We saw how to do supervised learning when 
the “features” φ(x) are fixed.
– Let’s extend to case where features are given by 

tunable functions with their own parameters.

Inputs are “features”---one 
feature for each row of W:Outer part of function is same 

as logistic regression.



Basic idea

• To do supervised learning for two-class 
classification, minimize:

• Same as logistic regression, but now f(x) has 
multiple stages (“layers”, “modules”):

Intermediate representation (“features”) Prediction for



Neural network

• This model is a sigmoid “neural network”:

Flow of computation.
“Forward prop”

“Neuron”



Neural network
• Can stack up several layers: Must learn multiple stages

of internal “representation”.



Back-propagation

• Minimize:

• To minimize              we need gradients:

– Then use gradient descent algorithm as before.

• Formula for                 can be found by hand 
(same as before);  but what about W?
– Beyond the scope of this course



Back-propagation
• Can re-apply chain rule to get gradients for all 

intermediate values and parameters.

“Backward” modules for each forward stage.



Training Procedure
• Collect labeled training data

– For SGD:  Randomly shuffle after each epoch!

• For a batch of examples:
– Compute gradient w.r.t. all parameters in network.

– Make a small update to parameters.

– Repeat until convergence.



Training Procedure

• Historically, this has not worked so easily.
– Non-convex:  Local minima;  convergence criteria.
– Optimization becomes difficult with many stages.

• “Vanishing gradient problem”
– Hard to diagnose and debug malfunctions.

• Many things turn out to matter:
– Choice of nonlinearities.
– Initialization of parameters.
– Optimizer parameters:  step size, schedule.



Nonlinearities

• Choice of functions inside network matters.
– Sigmoid function turns out to be difficult.
– Some other choices often used:

1

-1

1

tanh(z) ReLu(z) = max{0, z}

“Rectified Linear Unit”
 Increasingly popular.

1

abs(z)

[Nair & Hinton, 2010]



Initialization

• Usually small random values.
– Try to choose so that typical input to a neuron avoids saturating / non-

differentiable areas.

• Initialization schemes for particular units:
– tanh units:  Unif[-r, r];  sigmoid:  Unif[-4r, 4r].

See [Glorot et al., AISTATS 2010]

• Use features from unsupervised learning

1



SUPERVISED DL FOR 
VISION

Application



Working with images

• Major factors:
– Want to have “selective” features and “invariant” 

features.
– Try to exploit knowledge of images to accelerate 

training or improve performance.

• Generally try to avoid wiring detailed visual 
knowledge into system --- prefer to learn.



Local connectivity

• Neural network view of single neuron:
Extremely large number of connections.
More parameters to train.
Higher computational expense.
Turn out not to be helpful in practice.



Local connectivity
• Reduce parameters with local connections.

– Weight vector is a spatially localized “filter”.



Local connectivity

• Sometimes think of neurons as viewing small 
adjacent windows.
– Specify connectivity by the size (“receptive field” size) 

and spacing (“step” or “stride”) of windows.
• Typical RF size = 5 to 20
• Typical step size = 1 pixel up to RF size.

Rows of W are sparse.
Only weights connecting to inputs 
in the window are non-zero.



Local connectivity

• Spatial organization of filters means output features 
can also be organized like an image.
– X,Y dimensions correspond to X,Y position of neuron 

window.
– “Channels” are different features extracted from same 

spatial location.  (Also called “feature maps”, or “maps”.)

1D input

1-dimensional example:

X spatial location

“Channel” or “map” index



Local connectivity
 We can treat output of a layer like an image and re-use the 

same tricks.

1D input

1-dimensional example:

X spatial location

“Channel” or “map” index



Weight-Tying

• Even with local connections, may still have too 
many weights.
– Trick:  constrain some weights to be equal if we 

know that some parts of input should learn same 
kinds of features.

– Images tend to be “stationary”:  different patches 
tend to have similar low-level structure.



Weight-Tying or 
Convolutional Network
 Reduce parameters by making them equal.

1D input

X spatial location

• Each unique filter is spatially convolved with the input to 
produce responses for each map. [LeCun et al., 1989;  LeCun
et al., 2004]



Pooling
• Functional layers designed to represent invariant features.
• Usually locally connected with specific nonlinearities.

– Combined with convolution, corresponds to hard-wired 
translation invariance.

• Usually fix weights to local box or gaussian filter.
– Easy to represent max-, average-, or 2-norm pooling.

[Scherer et al., ICANN 2010]
[Boureau et al., ICML 2010]

Power mean



Contrast Normalization

• Empirically useful to soft-normalize magnitude of 
groups of neurons.
– Sometimes we subtract out the local mean first.

[Jarrett et al., ICCV 2009]



Application: Image-Net
• System from Krizhevsky et al., NIPS 2012:

– Convolutional neural network.
– Max-pooling.
– Rectified linear units (ReLu).
– Contrast normalization.
– Local connectivity.



Application: Image-Net

• Top result in LSVRC 2012:  ~85%, Top-5 accuracy.

What’s an Agaric!?



More applications
• Segmentation:  predict classes of pixels / super-pixels.

• Detection:  combine classifiers with sliding-window architecture.
– Economical when used with convolutional nets.

• Robotic grasping.   [Lenz et al., RSS 2013]

 Ciresan et al., NIPS 2012

Farabet et al., ICML 2012

Pierre Sermanet (2010) 

http://www.youtube.com/watch?v=f9CuzqI1SkE

http://www.youtube.com/watch?v=f9CuzqI1SkE


PA3

• Apply binary code embedding and inverted 
index to PA2
– k-means or product quantization (PQ) for inverted 

index
– Spherical hashing or PQ for binary code 

embedding



UNSUPERVISED DL



Representation Learning
• In supervised learning, train “features” to 

accomplish top-level objective.

But what if we have too 
few labels to train all 
these parameters?



Representation Learning
• Can we train the “representation” without using 

top-down supervision?

Learn a “good” 
representation directly?



Representation Learning

• What makes a good representation?
– Distributed:  roughly, K features represents more than 

K types of patterns. 
• E.g., K binary features that can vary independently to 

represent 2K patterns.

– Invariant:  robust to local changes of input;  more 
abstract.

• E.g., pooled edge features:  detect edge at several locations.

– Disentangling factors:  put separate concepts (e.g., 
color, edge orientation) in separate features.

Bengio, Courville, and Vincent (2012)



Sparse auto-encoder

• Train two-layer neural network by minimizing:

• Remove “decoder” and use learned features (h).

W1

W2

[Ranzato et al., NIPS 2006]



What features are learned?

• Applied to image patches, well-known result:

Sparse auto-encoderSparse auto-encoder
[Ranzato et al., 2007]



Summary

• Supervised deep-learning
– Practical and highly successful in practice.  A 

general-purpose extension to existing ML.
– Optimization, initialization, architecture matter!

• Unsupervised deep-learning
– Pre-training often useful in practice.
– Difficult to train many layers of features without 

labels.



Resources

Tutorials
Stanford Deep Learning tutorial:

http://ufldl.stanford.edu/wiki

DeepLearning tutorials list:
http://deeplearning.net/tutorials

IPAM DL/UFL Summer School:
http://www.ipam.ucla.edu/programs/gss2012/

ICML 2012 Representation Learning Tutorial
http://www.iro.umontreal.ca/~bengioy/talks/deep-learning-
tutorial-2012.html



References
http://www.stanford.edu/~acoates/bmvc2013refs.pdf
Overviews:
Yoshua Bengio, 

“Practical Recommendations for Gradient-Based Training of Deep Architectures”

Yoshua Bengio & Yann LeCun, 
“Scaling Learning Algorithms towards AI”

Yoshua Bengio, Aaron Courville & Pascal Vincent, 
“Representation Learning: A Review and New Perspectives”

Software:
Theano GPU library:  http://deeplearning.net/software/theano
SPAMS toolkit:  http://spams-devel.gforge.inria.fr/

http://deeplearning.net/software/theano


High-Level Messages

• Deep neural nets provide low-level and high-
level features
– We can use those features for image search

• Achieve the best results in many computer 
vision related problems

Krizhevsky et al., NIPS 2012
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