
CS688: Web-Scale Image Search
Deep Neural Nets and

Features

Sung-Eui Yoon
(윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/IR

2

Class Objectives
● Study neural nets, especially, convolution

neural nets (CNNs)

● See its applications to computer vision
problems and image search

3

4

6

7

8

11

High-Level Messages
● Deep neural nets provide low-level and

high-level features
● We can use those features for image search

● Achieve the best results in many computer
vision related problems

Krizhevsky et al., NIPS 2012

12

High-Level Messages
● Many features and codes

are available
● Caffe [Krizhevsky et al., NIPS

2012]
● Very deep convolutional

networks [Simonyan et al.,
ICLR 15]; using up to 19
layers

● Deep Residual Learning [He
et al., CVPR 16]; using up to
152 layers

● Model Zoo
github.com/BVLC/caffe/wiki/
Model-Zoo

13

High-Level Messages
● Perform the end-to-end optimization w/

lots of training data
● Aims not only features, but the accuracy of any

end-to-end systems including image search

Krizhevsky et al., NIPS 2012

Deep Learning for Vision

Adam Coates
Stanford University

(Visiting Scholar: Indiana University, Bloomington)

What do we want ML to do?

• Given image, predict complex high-level patterns:

Object recognition Detection Segmentation

“Cat”

[Martin et al., 2001]

How is ML done?

• Machine learning often uses hand-designed feature
extraction.

Feature Extraction Machine Learning
Algorithm “Cat”?

Prior Knowledge,
Experience

“Deep Learning”

• Deep Learning
• Train multiple layers of features from data.
• Try to discover useful representations

Low-level
Features

Mid-level
Features

High-level
Features Classifier “Cat”?

More abstract representation

“Deep Learning”

• Why do we want “deep learning”?
– Some decisions require many stages of processing.
– We already hand-engineer “layers” of

representation.
– Algorithms scale well with data and computing

power.
• In practice, one of the most consistently successful

ways to get good results in ML.

Have we been here before?

Yes: Basic ideas common to past ML and
neural networks research.

No.
– Faster computers; more data.
– Better optimizers; better initialization schemes.

• “Unsupervised pre-training” trick
[Hinton et al. 2006; Bengio et al. 2006]

– Lots of empirical evidence about what works.
• Made useful by ability to “mix and match” components.

[See, e.g., Jarrett et al., ICCV 2009]

Real impact

• DL systems are high performers in many tasks
over many domains.

Image recognition
[E.g., Krizhevsky et al., 2012]

Speech recognition
[E.g., Heigold et al., 2013]

NLP
[E.g., Socher et al., ICML 2011;

Collobert & Weston, ICML 2008]

[Honglak Lee]

MACHINE LEARNING
REFRESHER

Crash Course

Supervised Learning

• Given labeled training examples:

• For instance: x(i) = vector of pixel intensities.
y(i) = object class ID.

• Goal: find f(x) to predict y from x on training data.
– Hopefully: learned predictor works on “test” data.

255
98
93
87
…

f(x) y = 1 (“Cat”)

Logistic Regression
• Simple binary classification algorithm

– Start with a function of the form:

– Interpretation: f(x) is probability that y = 1.

– Find choice of that minimizes objective:

1

cost
From Ng’s slide

Optimization

• How do we tune to minimize ?
• One algorithm: gradient descent

– Compute gradient:

– Follow gradient “downhill”:

• Stochastic Gradient Descent (SGD): take step
using gradient from only small batch of examples.
– Scales to larger datasets. [Bottou & LeCun, 2005]

Features

• Huge investment devoted to building application-
specific feature representations.

Object Bank [Li et al., 2010] Super-pixels
[Gould et al., 2008; Ren & Malik, 2003]

SIFT [Lowe, 1999] Spin Images [Johnson & Hebert, 1999]

SUPERVISED
DEEP LEARNING

Extension to neural networks

Basic idea

• We saw how to do supervised learning when
the “features” φ(x) are fixed.
– Let’s extend to case where features are given by

tunable functions with their own parameters.

Inputs are “features”---one
feature for each row of W:Outer part of function is same

as logistic regression.

Basic idea

• To do supervised learning for two-class
classification, minimize:

• Same as logistic regression, but now f(x) has
multiple stages (“layers”, “modules”):

Intermediate representation (“features”) Prediction for

Neural network

• This model is a sigmoid “neural network”:

Flow of computation.
“Forward prop”

“Neuron”

Neural network
• Can stack up several layers: Must learn multiple stages

of internal “representation”.

Back-propagation

• Minimize:

• To minimize we need gradients:

– Then use gradient descent algorithm as before.

• Formula for can be found by hand
(same as before); but what about W?
– Beyond the scope of this course

Back-propagation
• Can re-apply chain rule to get gradients for all

intermediate values and parameters.

“Backward” modules for each forward stage.

Training Procedure
• Collect labeled training data

– For SGD: Randomly shuffle after each epoch!

• For a batch of examples:
– Compute gradient w.r.t. all parameters in network.

– Make a small update to parameters.

– Repeat until convergence.

Training Procedure

• Historically, this has not worked so easily.
– Non-convex: Local minima; convergence criteria.
– Optimization becomes difficult with many stages.

• “Vanishing gradient problem”
– Hard to diagnose and debug malfunctions.

• Many things turn out to matter:
– Choice of nonlinearities.
– Initialization of parameters.
– Optimizer parameters: step size, schedule.

Nonlinearities

• Choice of functions inside network matters.
– Sigmoid function turns out to be difficult.
– Some other choices often used:

1

-1

1

tanh(z) ReLu(z) = max{0, z}

“Rectified Linear Unit”
 Increasingly popular.

1

abs(z)

[Nair & Hinton, 2010]

Initialization

• Usually small random values.
– Try to choose so that typical input to a neuron avoids saturating / non-

differentiable areas.

• Initialization schemes for particular units:
– tanh units: Unif[-r, r]; sigmoid: Unif[-4r, 4r].

See [Glorot et al., AISTATS 2010]

• Use features from unsupervised learning

1

SUPERVISED DL FOR
VISION

Application

Working with images

• Major factors:
– Want to have “selective” features and “invariant”

features.
– Try to exploit knowledge of images to accelerate

training or improve performance.

• Generally try to avoid wiring detailed visual
knowledge into system --- prefer to learn.

Local connectivity

• Neural network view of single neuron:
Extremely large number of connections.
More parameters to train.
Higher computational expense.
Turn out not to be helpful in practice.

Local connectivity
• Reduce parameters with local connections.

– Weight vector is a spatially localized “filter”.

Local connectivity

• Sometimes think of neurons as viewing small
adjacent windows.
– Specify connectivity by the size (“receptive field” size)

and spacing (“step” or “stride”) of windows.
• Typical RF size = 5 to 20
• Typical step size = 1 pixel up to RF size.

Rows of W are sparse.
Only weights connecting to inputs
in the window are non-zero.

Local connectivity

• Spatial organization of filters means output features
can also be organized like an image.
– X,Y dimensions correspond to X,Y position of neuron

window.
– “Channels” are different features extracted from same

spatial location. (Also called “feature maps”, or “maps”.)

1D input

1-dimensional example:

X spatial location

“Channel” or “map” index

Local connectivity
 We can treat output of a layer like an image and re-use the

same tricks.

1D input

1-dimensional example:

X spatial location

“Channel” or “map” index

Weight-Tying

• Even with local connections, may still have too
many weights.
– Trick: constrain some weights to be equal if we

know that some parts of input should learn same
kinds of features.

– Images tend to be “stationary”: different patches
tend to have similar low-level structure.

Weight-Tying or
Convolutional Network
 Reduce parameters by making them equal.

1D input

X spatial location

• Each unique filter is spatially convolved with the input to
produce responses for each map. [LeCun et al., 1989; LeCun
et al., 2004]

Pooling
• Functional layers designed to represent invariant features.
• Usually locally connected with specific nonlinearities.

– Combined with convolution, corresponds to hard-wired
translation invariance.

• Usually fix weights to local box or gaussian filter.
– Easy to represent max-, average-, or 2-norm pooling.

[Scherer et al., ICANN 2010]
[Boureau et al., ICML 2010]

Power mean

Contrast Normalization

• Empirically useful to soft-normalize magnitude of
groups of neurons.
– Sometimes we subtract out the local mean first.

[Jarrett et al., ICCV 2009]

Application: Image-Net
• System from Krizhevsky et al., NIPS 2012:

– Convolutional neural network.
– Max-pooling.
– Rectified linear units (ReLu).
– Contrast normalization.
– Local connectivity.

Application: Image-Net

• Top result in LSVRC 2012: ~85%, Top-5 accuracy.

What’s an Agaric!?

More applications
• Segmentation: predict classes of pixels / super-pixels.

• Detection: combine classifiers with sliding-window architecture.
– Economical when used with convolutional nets.

• Robotic grasping. [Lenz et al., RSS 2013]

 Ciresan et al., NIPS 2012

Farabet et al., ICML 2012

Pierre Sermanet (2010) 

http://www.youtube.com/watch?v=f9CuzqI1SkE

http://www.youtube.com/watch?v=f9CuzqI1SkE

PA3

• Apply binary code embedding and inverted
index to PA2
– k-means or product quantization (PQ) for inverted

index
– Spherical hashing or PQ for binary code

embedding

UNSUPERVISED DL

Representation Learning
• In supervised learning, train “features” to

accomplish top-level objective.

But what if we have too
few labels to train all
these parameters?

Representation Learning
• Can we train the “representation” without using

top-down supervision?

Learn a “good”
representation directly?

Representation Learning

• What makes a good representation?
– Distributed: roughly, K features represents more than

K types of patterns.
• E.g., K binary features that can vary independently to

represent 2K patterns.

– Invariant: robust to local changes of input; more
abstract.

• E.g., pooled edge features: detect edge at several locations.

– Disentangling factors: put separate concepts (e.g.,
color, edge orientation) in separate features.

Bengio, Courville, and Vincent (2012)

Sparse auto-encoder

• Train two-layer neural network by minimizing:

• Remove “decoder” and use learned features (h).

W1

W2

[Ranzato et al., NIPS 2006]

What features are learned?

• Applied to image patches, well-known result:

Sparse auto-encoderSparse auto-encoder
[Ranzato et al., 2007]

Summary

• Supervised deep-learning
– Practical and highly successful in practice. A

general-purpose extension to existing ML.
– Optimization, initialization, architecture matter!

• Unsupervised deep-learning
– Pre-training often useful in practice.
– Difficult to train many layers of features without

labels.

Resources

Tutorials
Stanford Deep Learning tutorial:

http://ufldl.stanford.edu/wiki

DeepLearning tutorials list:
http://deeplearning.net/tutorials

IPAM DL/UFL Summer School:
http://www.ipam.ucla.edu/programs/gss2012/

ICML 2012 Representation Learning Tutorial
http://www.iro.umontreal.ca/~bengioy/talks/deep-learning-
tutorial-2012.html

References
http://www.stanford.edu/~acoates/bmvc2013refs.pdf
Overviews:
Yoshua Bengio,

“Practical Recommendations for Gradient-Based Training of Deep Architectures”

Yoshua Bengio & Yann LeCun,
“Scaling Learning Algorithms towards AI”

Yoshua Bengio, Aaron Courville & Pascal Vincent,
“Representation Learning: A Review and New Perspectives”

Software:
Theano GPU library: http://deeplearning.net/software/theano
SPAMS toolkit: http://spams-devel.gforge.inria.fr/

http://deeplearning.net/software/theano

High-Level Messages

• Deep neural nets provide low-level and high-
level features
– We can use those features for image search

• Achieve the best results in many computer
vision related problems

Krizhevsky et al., NIPS 2012

	슬라이드 번호 1
	Class Objectives
	슬라이드 번호 3
	슬라이드 번호 4
	슬라이드 번호 6
	슬라이드 번호 7
	슬라이드 번호 8
	High-Level Messages
	High-Level Messages
	High-Level Messages
	Deep Learning for Vision
	What do we want ML to do?
	How is ML done?
	“Deep Learning”
	“Deep Learning”
	Have we been here before?
	Real impact
	Machine Learning Refresher
	Supervised Learning
	Logistic Regression
	Optimization
	Features
	Supervised�Deep Learning
	Basic idea
	Basic idea
	Neural network
	Neural network
	Back-propagation
	Back-propagation
	Training Procedure
	Training Procedure
	Nonlinearities
	Initialization
	Supervised DL for VISION
	Working with images
	Local connectivity
	Local connectivity
	Local connectivity
	Local connectivity
	Local connectivity
	Weight-Tying
	Weight-Tying or Convolutional Network
	Pooling
	Contrast Normalization
	Application: Image-Net
	Application: Image-Net
	More applications
	PA3
	UNSUPERVISED DL
	Representation Learning
	Representation Learning
	Representation Learning
	Sparse auto-encoder
	What features are learned?
	Summary
	Resources
	References
	High-Level Messages

