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Class Objectives

e Bag-of-visual-Word (BoW) model
e Pooling operation

e Ranking loss for CNN features

e At the prior class:

e Went over main components of CNNs: local
connectivity and pooling
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Bag of ‘words’

Represent an image
with a histogram of
words

Inspired by text search
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definition of “BoW”

— Independent features

Face bike violin




definition of “BoW”

— Independent features

— histogram representation
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Representation recognition
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1. Feature Detection and
Representations

e Assume many local
features as an
aggregation model

e Global feature is not
used in this context

e Densely sampled or
sampled only at key

points
e Detect patchesa (— D
extract features [E} s "
from them Compute

SIFT Normalize
descriptor patch

[Lowe'99]

Detect patches
[Mikojaczyk and Schmid '02]
[Mata, Chum, Urban & Pajdla, '02]



2. Codewords dictionary formation
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2. Codewords dictionary formation
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K-Means Clustering

e An unsupervised learning
e Minimize the W|th|n-cluster sum of squares
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1) Kinitial "means” (in this case
f=3) are randomly selected
from the data set (shown in
color).

Demonstration of the standard algorithm
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2) k clusters are created by
associating every obhservation
with the nearest mean. The
partitions here represent the
Yoronoi diagram generated by
the means.

i l
3) The centroid of each of the & 4) Steps 2 and 3 are repeated

clusters becomes the new until convergence has been
means. reached.
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Codewords Dictionary Formation
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Image patch examples of codewords

Sivic et al. 2005



Issues of Visual Vocabulary

e Related to quantization
e Too many words: quantization artifacts
e Too small words: not representative

e K-means also takes long computation times

e Alternatives

e Faster performance:
vocabulary tree, Nister et al.

e Low quantization artifacts:
soft quantization, Philbin et al. D B
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3. Bag of word representation

111
.I-"I.h:
L
L]
L
|
.-'
B
ME
!.

-

* Nearest neighbors assignment =K = [E=IIZWIl E.
* K-D tree search strategy
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3. Bag of word representation

frequency

codewords

A kind of pooling operations
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Representation
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TF-IDF

e Adopted from text search
e A kind of weighting and normalization process

e Assume a document to be represented by (1....7i....1%) '

e Weighted by TF (Term frequency) * log (IDF
(Inverse Document Frequency))

e n,: # of occurrences of word i in document d

e n,: total # of words in the document d

e n;: # of occurrences of term i in the whole database
e N: # of documents in the whole database

KAIST



Similarity and Distance
Functions

e Dot product measuring the angle between
two vectors

L1 (Manhattan) distance L2 (Euclidean) distance

GiE R =Y P - d(lnB) = |3 (17 - 1)

- | P

dh
O W

19 KAIST




Mahalanobis Distance

Mahalanobis weighs L2 distance
between two points, by the standard
deviation of the data

f(x,y) = (x-y) 2"(x-y),

where ) is the mean-subtracted
covariance matrix of all data points.

Image Source:
Google

Chandra, M.P., 1936. On the generalised distance in statistics. In Proceedings of the National

20 Institute of Sciences of India (Vol. 2, No. 1, pp. 49-55). KA'ST



Similarity Learning: Siamese CNN

e Learn a feature representation mapping the
sample patches with the L2 distance

Patches Siamese network

Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, l., Fua, P. and Moreno-Noguer, F., 2015. Discriminative learning of
deep convolutional feature point descriptors. In Proceedings of the IEEE International Conference on Computer

N Vision (pp. 118-126). KAIST



Siamese CNN Variants: Triplet
Network or Loss

AH—» f
" =

f
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— |
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D(f(A), #(B)) < D(f(A), f(C))

*Allows us to learn ranking between samples
‘Known as a ranking loss

Vo, N.N. and Hays, J., 2016, October. Localizing and orienting street views using overinfﬂjI
22 imagery. In European Conference on Computer Vision (pp. 494-509). ST
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Utilize BoW for CNN Image
Retrieval

e Construct 3D models from BoW based
image retrieval

e Refine CNN features by mimicking BoW-based

retrieval
e Unsupervised groups of photos with different

landmarks

Image Database 3D models:

7.4M images 551 training /:.5.162 validation
"R‘ﬁvﬂﬂfﬂﬁ‘ L
,',', 3 Reggal ﬁ{'“ﬂ*f’? .

'Ei StM .

nalST



Given a query, identify its positive (same cluster or city)
and its negative image

diverse hard negatives
query

Negative images

random from

query top 1 by CNN top 1 by Bow top k by Bow

Positive images

CNN Image Retrieval Learns from BoW:
Unsupervised Fine-Tuning with Hard Examples, ECCV



25

PA2

e Understand and implement a basic image
retrieval system

e Use the original UKBenchmark
e Measure its accuracy

Second

11447705, 28526271 p 29.213146.p 31938790,)p

KAIST



VLAD (Vector of Locally
Aggregated Descriptors)

e BoOW

e Count the number of SIFTs assigned to each

cluster
e VLAD

e Compute the difference between a feature and

its cluster center

x such that NN(z)=c¢;

26
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Figure 5. Search accuracy as a function of the database size.
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Normalization for VLAD

e Results in better accuracy
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28 Ack. All about VLAD KAIST
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NetVLAD: CNN architecture for
weakly supervised place recognition

e Identify its location given an query image
e Application of place recognition

1. Legacy and historical imagery

2. |Improve accuracy of GPS
(augmented reality,
navigation in robotics)

3. Understand personal
photo collections

From the author talk

KAIST



Mimic the classical approach

e Make it end-to-end trainable for achieving

better accuracy

’
ii -
—— — v ra o

Aggregate
(BoW, VLAD, FV)

Image | Extract local
features (SIFT)
Image Convolutional Neural Network

L
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NetVLAD layer

soft-assignment
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Convolutional layers from
AlexNet or VGGNet

¥

-

Trainable pooling layer

KAIST
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Trainable VLAD

e Hard assignment to soft assignment using
the soft-max, to make it differentiable

N
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|

IWxHxD map interpreted as g
I NxD local descriptors x

________________________________ \IST
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Problems of BoW Model

e No spatial relationship
between words

e How can we perform
segmentation and
localization?

Ack.: Fei-Fei Li

KAIST
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Class Objectives were:

e Bag-of-visual-Word (BoW) model
e Pooling operation

e Ranking loss for CNN features

KAIST
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Next Time...

e Inverted index

KAIST



Homework for Every Class

e Go over the next lecture slides

e Come up with one question on what we have
discussed today

e Write questions three times

e Go over recent papers on image search, and submit
their summary before Tue. class

35 KAIST
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Figs
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