Large-Scale Image Retrieval with Attentive Deep Local Features ICCV 2017

2021.04.27

Sebin Lee

• Background & Motivation

• Our Approach

• Results

• Summary

• Quiz

Recap: Keypoint

- Important point of image (e.g., corner)
- The keypoint itself is not useful for image retrieval.
- e.g., Harris corner detector, Local maxima of DoG

< Harris corner detector >

< Local maxima of DoG >

Recap: Local Descriptor

- The local descriptor is used because the keypoint itself is not useful.
- The local descriptor means a compact representation of the image patch centered on the extracted keypoint.
- e.g., SIFT

Classical Keypoint & Local Descriptor Properties

- Repeatable
- Distinctive
- Invariant
- Adequate Quantity

Sparse keypoint & descriptor

< Keypoints of Image>

How about deep feature?

Deep Feature

- CNNs generate uniformly dense grid feature map.
- We can regard the dense grid feature map as a grid of local descriptors.

Motivation

- Unlike classical methods, the CNNs generate uniformly dense grid local descriptors.
- Therefore, local descriptors are extracted from regions that have no value as keypoints. (e.g., texture-less region)
- Many local descriptors containing unnecessary ones hinder search and making codebook.

< Query feature contains unnecessary local descriptors (people) >

∴ We needs keypoint selection that selects only helpful keypoints for efficient and accurate image retrieval.

• Background & Motivation

• Our Approach

• Results

• Summary

• Quiz

Goal

• Train a local descriptor network using keypoint selection for efficient and accurate image retrieval.

Goal

• Train a local descriptor network using keypoint selection for efficient and accurate image retrieval.

Goal

• Train a local descriptor network using keypoint selection for efficient and accurate image retrieval.

Train Local Descriptor Network by using Classification task

Backbone: ResNet50 trained on ImageNet
Fine tune the local descriptor network on Google Landmarks dataset.
 (Image Retrieval dataset)

Use only cross-entropy loss (loss of classification task)
However, this method doesn't perform keypoint selection.

Training for Keypoint Selection

- Keypoint selection can be performed by attention.
- Attention module is used to calculate attention score.
- Attention score is close to 0: no keypoint
- Attention score is close to 1: keypoint

Local Descriptor Network

∴ We can train the local descriptor network performing keypoint selection by end-to-end manner.

Comparison with classical local descriptor

- Classical Local descriptor
 - **1** keypoint selection
 - **②** local descriptor extraction
- Ours
 - **1** local descriptor extraction
 - **②** keypoint selection
- The order of process is different, but the results are similar.

Image retrieval pipeline with ours

• Overall image retrieval pipeline with our local descriptor network

• Background & Motivation

• Our Approach

Results

• Summary

• Quiz

Precision & Recall Result

- DELF: Backbone trained on ImageNet
- FT: Fine Tune with Google Landmarks
- ATT: Use Attention for keypoint selection
- QE: Use Query Expansion

mAP Result

- DELF: Backbone trained on ImageNet
- FT: Fine Tune with Google Landmarks
- ATT: Use Attention
- QE: Use Query Expansion
- DIR: Use global descriptor

Mean average precision: mAP(%)

Dataset	Oxf5k	Oxf1051	k Par6k	Par106k
DIR [11]	86.1	82.8	94.5	90.6
DIR+QE [11]	87.1	85.2	95.3	91.8
siaMAC [29]	77.1	69.5	83.9	76.3
siaMAC+QE [29]	81.7	76.6	86.2	79.8
CONGAS [8]	70.8	61.1	67.1	56.8
LIFT [40]	54.0	_	53.6	_
DELF+FT+ATT (ours)	83.8	82.6	85.0	81.7
DELF+FT+ATT+DIR+QE (ours)	90.0	88.5	95.7	92.8

DELF: Backbone trained on ImageNet

FT: Fine Tune with Google Landmarks

ATT: Use Attention

Keypoint Selection Result(Attention Result)

- Keypoint selection effectively disregards clutter.
- Attention activates on important pixels for image retrieval.

• Background & Motivation

• Our Approach

• Results

• Summary

• Quiz

Contributions

- Keypoint selection using the attention module
 - Unnecessary region descriptors are suppressed. (e.g., texture-less region)
 - Only sparse local descriptors that are useful for image retrieval are extracted.
 - ∴ Search efficiency ↑, Accuracy ↑

< Result of Keypoint Selection>

Strengths & Weaknesses

Strengths

- Proposed method can extract both local descriptors and keypoints via one forward pass.
- Efficient and accurate image retrieval can be performed by keypoint selection using attention.

Weaknesses

- This paper trains the descriptor network using only classification task. (Do not use other metric learning methods)
- The image label is required to train the network.

• Background

• Related work

• Our Approach

• Results

Quiz

Quiz

Quiz

• Please submit this google form.

Link will be posted in the regular zoom meeting session.

THANK YOU