Attention-based Ensemble for Deep Metric Learning ECCV 2018

2021.05.27 Sebin Lee

Review: Meta Batch-Instance Normalization

- Propose MetaBIN that improve generalization ability by unsuccessful generalization scenarios in a meta-learning manner.
- MetaBIN: $\mathbf{y} = \rho (\gamma_B \cdot \hat{\mathbf{x}}_B + \beta_B) + (1 \rho) (\gamma_I \cdot \hat{\mathbf{x}}_I + \beta_I)$
- Meta-train stage
 - Over-style normalization: scatter loss, shuffle loss
 - Under-style normalization: triplet loss
- Meta-test stage
 - $\theta_{\rho} \leftarrow \theta_{\rho} \gamma \nabla_{\theta_{\rho}} \mathcal{L}_{tr}(\mathcal{X}_T; \theta_f, \theta_{\rho}')$

Attention-based Ensemble for Deep Metric Learning ECCV 2018

2021.05.27 Sebin Lee

Contents

• Background & Motivation

• Our Approach

• Results

• Summary

X: input space

Y: embedding space

Deep Metric Learning

- Goal: learn embedding function $f: X \to Y$ In feature embedding space, positive samples are embedded as close as possible, negative samples are embedded as separated as possible.
- Ranking Loss Examples

A: Anchor

P: Positive

Negative

S: Similar

Deep Metric Learning: Distance

- If embedding function maps an image in unknown metric space to known metric space.
- We can define distance function(metric function): $d = ||f(x_i) f(x_j)||_2$

RGB space: unknown metric space

Embedding space: known metric space (e.g., Euclidean space)

Ensemble

• Use multiple models to obtain better performance.

Ensemble: Parameter Sharing

• For efficiency, use parameter sharing.

Ensemble: Required Property

(1) Individual models should have high-performance.

(2) Individual models should be diverse.

Ensemble: Required Property(1)

(1) Individual models should have high-performance.

Ensemble: Required Property(2)

(2) Individual models should be diverse.

similar parameters
similar features
similar predictions
no advantage of ensemble

Diversity:

different parameters
different features
different predictions
advantage of ensemble

Ensemble for Model Diversity

• Individual models should be diverse.

• Example of early works:

Motivation & Goal

• Required properties for Ensemble:

- (1) Individual models should have high-performance.
- (2) Individual models should be diverse.

• Ours:

- (1) Apply **Attention** for high-performance.
- (2) Propose **Divergence Loss** for model diversity.

Contents

• Background & Motivation

• Our Approach

• Results

• Summary

Baseline: M-heads

E : encoder

 D_m : decoder

- Use shared encoder for efficiency(i.e., parameter sharing)
- We have M models f_m by M decoders.

$$f_1(x) = D_1(E(x))$$
 \vdots
 $f_M(x) = D_M(E(x))$

• Ensemble distance function

$$d_{ens}(x_i,x_j) = rac{1}{M} \sum_{m=1}^{M} ||f_m(x_i) - f_m(x_j)||_2$$

E : encoder

 A_m : attention block

 D_m : decoder

Ours: ABE-M(Attention-Based Ensemble with M learners)

- ullet Add attention block A_m .
- Use shared decoder for efficiency.
- We have M models f_m by M Attentions.

$$f_1(x) = D(E(x) \otimes A_1(E(x))) \ egin{equation} oldsymbol{\cdot} \ oldsymbol{\cdot} \ f_M(x) = D(E(x) \otimes A_M(E(x))) \end{aligned}$$

• Ensemble distance function

$$d_{ens}(x_i,x_j) = rac{1}{M} \sum_{m=1}^{M} ||f_m(x_i) - f_m(x_j)||_2 \, .$$

Goal

- Required properties for Ensemble:
 - (1) Individual models should have high-performance.
 - (2) Individual models should be diverse.
- Ours:
 - (1) Apply Attention for high-performance.
 - (2) Propose **Divergence Loss** for model diversity.

Loss Function: Pairwise Loss

• Use Pairwise loss with m-th model as ranking loss

$$L_{pair,(m)} = rac{1}{N} \sum_{i,j} (1-y_{ij}) \max(0, ext{margin} - ||f_m(x_i) - f_m(x_j)||_2 + y_{i,j} ||f_m(x_i) - f_m(x_j)||_2)$$

where $y_{i,j}$ is 1 if x_i , x_j is belong to same class, otherwise 0.

• Example for Pairwise Loss with m-th model

if positive samples

if negative samples

Loss Function: Divergence Loss

• Proposed Divergence loss for diversity of individual models.

$$L_{div} = \sum_i \sum_{p,q} \max(0, \mathrm{margin} - ||f_p(x_i) - f_q(x_i)||_2)$$

• Divergence loss aims to push the features of same sample from different models.

Loss Function: Total

• Total Loss: Pairwise Loss + Divergence Loss

$$L = \sum_{m=1}^{M} oldsymbol{L}_{pair,(m)} + \lambda_{div} oldsymbol{L}_{div}$$

• Example) 4 samples (, ,) and 2 models $(f_1(\cdot), f_2(\cdot))$

Goal

- Required properties for Ensemble:
 - (1) Individual models should have high-performance.
 - (2) Individual models should be diverse.
- Ours:
 - (1) Apply Attention for high-performance.
 - (2) Propose Divergence Loss for model diversity.

Apply to Image Retrieval

Contents

• Background & Motivation

• Our Approach

Results

• Summary

Recall@1: Ours vs Baseline

• Dataset: CARS-196

Recall@1

• Embedding dimension: 512

Recall@K: Ensemble & Individual Performance

• M-heads: baseline e.g., 8-heads⁵¹²: baseline with 8 models + 512 embedding dim

• ABE-M: ours e.g., ABE- 8^{512} : ours with 8 models + 512 embedding dim

		Ensemble			Individual Learners				params	flops	
	K	1	2	4	8	1	2	4	8	$(\times 10^7)$	$(\times 10^{9})$
	1-head ⁵¹²	67.2	77.4	85.3	90.7	-	-	-	_	0.65	1.58
Baseline	2-heads ⁵¹²	73.3	82.5	88.6	93.0	$70.2 {\pm}.03$	$79.8 {\pm}.52$	$86.7 {\pm}.01$	$91.9 {\pm}.37$	1.18	2.25
	4-heads ⁵¹²	76.6	84.2	89.3	93.2	$70.4 {\pm}.80$	$79.9 {\pm}.38$	$86.5 {\pm}.43$	$91.4 {\pm} .42$	2.24	3.60
	8 -heads 512	76.1	84.3	90.3	93.9	$68.3 \pm .39$	$78.5 \pm .39$	$86.0 \pm .37$	$91.3 \pm .31$	4.36	6.28
	ABE-1 ⁵¹²	67.3	77.3	85.3	90.9	-	-	-	-	0.97	2.21
	$ABE-2^{512}$	76.8	84.9	90.2	94.0	$70.9 {\pm} .58$	$80.3 {\pm}.04$	$87.1 {\pm}.07$	$92.2 {\pm}.20$	0.98	2.96
Ours «	$ABE-4^{512}$	82.5	<u>89.1</u>	<u>93.0</u>	95.5	$74.4 {\pm}.51$	$83.1{\pm}.47$	$89.1 {\pm} .34$	$93.2 \pm .36$	1.05	4.46
	$ABE-8^{512}$	85.2	90.5	93.9	96.1	$75.0 {\pm}.39$	$83.4{\pm}.24$	$89.2 \pm .31$	$93.2 {\pm}.24$	1.20	7.46
	$ABE-1^{64}$	65.9	76.5	83.7	89.3	-	-	-	-	0.92	2.21
	$ABE-2^{128}$	75.5	84.0	89.4	93.6	$68.6 {\pm} .38$	$78.8 {\pm}.38$	$85.7 {\pm}.43$	$91.3{\scriptstyle\pm.16}$	0.96	2.96
	$ABE-4^{256}$	81.8	88.5	92.4	95.1	$72.3 {\pm}.68$	$81.4{\pm}.45$	$87.9 {\pm}.23$	$92.3{\scriptstyle\pm.13}$	1.04	4.46

Effect of Divergence Loss

• Recall@K on CARS-196 dataset

• Individual learners: L_{div} leads to increase performance slightly.

• Ensemble : L_{div} leads to increase performance significantly.

		Ense	mble		Individual Learners					
K	1	2	4	8	1	2	4	8		
$ABE-8^{512}$	85.2	90.5	93.9	96.1	75.0 ± 0.39	83.4 ± 0.24	89.2 ± 0.31	93.2 ± 0.24		
ABE-8 ⁵¹² without $L_{\rm div}$	69.7	78.8	86.2	91.5	$69.5 {\pm} 0.11$	$78.8{\scriptstyle\pm0.14}$	$86.1{\pm0.15}$	91.5 ± 0.09		

significantly increase

slightly increase

Effect of Divergence Loss

• Divergence loss leads to decrease in cosine similarity of same pair.(i.e., diversity \u00e7)

```
• same pair: (f_1(), f_2())
```

• positive pair: $(f_1(), f_2())$

ABE-8 w/o L_{div}

ABE-8 w/ L_{div}

Qualitative Result: Attention

• Different learners attend different parts of the car. i.e., Ours satisfies diversity of individual models for ensemble.

Masked input image by 27th channel of attention mask

Qualitative Result: Attention

- All models focus on entire part of the car.
 - i.e., Our attention module can help the model focus on important region.

Mean activation of attention masks across all channels

Recall@K: Comparison with SOTA(1)

• Dataset: Stanford online products(SOP)

	K	1	10	100	1000
	Contrastive 128 $\boxed{29}$	42.0	58.2	73.8	89.1
	LiftedStruct 512 [29]	62.1	79.8	91.3	97.4
	$N-Pairs^{512}$ [27]	67.7	83.8	93.0	97.8
Other SOTA	Clustering $[28]$	67.0	83.7	93.2	-
Other SOIA	Proxy NCA \dagger^{64} [20]	73.7	-	-	-
	Margin†128 [38]	72.7	86.2	93.8	98.0
	HDC^{384} [39]	69.5	84.4	92.8	97.7
	A-Bier ⁵¹² [23]	74.2	86.9	94.0	97.8
	ABE-2 ⁵¹²	75.4	88.0	94.7	98.2
Ours	ABE- 4^{512} ABE- 8^{512}	75.9	88.3	94.8	98.2
	ABE-8 ⁵¹²	76.3	88.4	94.8	98.2

Recall@K: Comparison with SOTA(2)

• Dataset: In-shop Clothes Retrieval Benchmark

	K	1	10	20	30	40	50
Other SOTA	FasionNet+Joints ⁴⁰⁹⁶ [18]	41.0	64.0	68.0	71.0	73.0	73.5
	FasionNet+Poselets ⁴⁰⁹⁶ [18]	42.0	65.0	70.0	72.0	72.0	75.0
	FasionNet 4096 [18]	53.0	73.0	76.0	77.0	79.0	80.0
	HDC^{384} [39]	62.1	84.9	89.0	91.2	92.3	93.1
Ours {	A-BIER 512 [23]	83.1	95.1	96.9	97.5	97.8	98.0
	$ABE-2^{512}$	85.2	96.0	97.2	97.8	98.2	98.4
	$ABE-4^{512}$	86.7	96.4	97.6	98.0	98.4	98.6
	ABE-8 ⁵¹²	87.3	96.7	97.9	98.2	98.5	98.7

Contents

• Background & Motivation

• Our Approach

• Results

• Summary

Contributions

- Satisfy required properties for Ensemble
 - (1) Individual models should have high-performance.
 - (2) Individual models should be diverse.
- **by**
 - (1) Apply **Attention** for high-performance.
 - (2) Propose **Divergence Loss** for model diversity.
- As a results, Achieve SOTA performance in image retrieval task

Strengths & Weaknesses

Strengths

- Attention increases the performance of individual models.
- Proposed divergence loss encourages individual models to extract features keeping diversity.
- Hence, proposed method improves the performance of individual model and the diversity, thereby increasing the performance of the ensemble model.

Weaknesses

- The proposed method should experiment to find the best place to insert the attention module for given backbone network.
- Performance changes a lot depending on the place of attention module.

THANK YOU

Quiz

Quiz

• Please submit this google form.

Link will be posted in the zoom session.