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Class Objectives are:

e CNN based approaches

e Consider different regions, attention, and local
features

e Discuss applications

e At the prior class:

e Discussed unsupervised hashing techniques
based on hyperplanes and hyperspheres

e Talked about supervised approach using deep
learning
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PA2

e Apply binary code embedding and inverted
index to PA1l

e k-means or product quantization (PQ) for
inverted index

e Spherical hashing or PQ for binary code
embedding
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ImageNet Classification with Deep
Convolutional Neural Networks [NIPS 12]

e Rekindled interest on CNNs

e Use a large training images, ImageNet, of 1.2 M
labelled images

e Use GPU w/ rectifying non-linearities
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Tested on ILSVRC-2010
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Neural Codes for Image Retrieval
[ECCV 14]

e Uses top layers of CNNs as high-level global
descertors (Neural Codes) for image
searc
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Sum Pooling and Centering
Priors

e Inspired by many prior aggregated features
(e.g., BoW
e Use convolution layers as local features
o Aggregation hd) =2, 2, few
e Simply sums those local features or
e Considers centering priors w/ varying weights

Method Holidays | Oxford5K (full) | Oxford105K (full) | UKB
Fisher vector, k=16 0.704 0.490 — —
Fisher vector, k=256 0.672 0.466 — —_
Triangulation embedding, k=1 0.775 0.539 — —
Triangulation embedding, k=16 0.732 0.486 — —
Max pooling 0.711 0.524 0.522 3.57
Sum pooling (SPoC w/o center prior) 0.802 0.589 0.578 3.65
SPoC (with center prior) 0.784 0.657 0.642 3.66

Ack.: Aggregating Deep Convolutional Features for Image Retrieval MIST



Localization: Faster R-CNN

o classifier ~ facebo

e Insert a Region Proposal
Network (RPN) after the last

convolutional layer . / , /

- Region Proposal Network -
e RPN trained to produce o '
feature map

region proposals directly
e No need for external region

proposals! /

y
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e Use Rol pooling and an “ | |
upstream classifier and BBoOX oo teicion wit Region Proposal Networks'
regressor just like Fast R- e

Slide credit: Ross Girschick
CNN KAIST



Faster R-CNN: Results

R-CNN Fast R-CNN Faster R-CNN
Test time per image 50 seconds 2 seconds 0.2 seconds
(with proposals)
(Speedup) 1x 25X 250x
mAP (VOC 2007) |66.0 66.9 66.9

R Outputs: bbox
Dee
- P softmax regressor
. |ConvNet

- T :T Fast R-CNN: rely upon
!

e U external region proposal

i Rol feature
feature map VEEEOR s
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R-MAC: Regional Maximum
Activation of Convolutions

e Use maximum activation of convolutions
for translation invariance

e Consider uniformly dqenerated regions with
different scales, and sum their features

..............

10 Ack.: PARTICULAR OBJECT RETRIEVAL WITH INTEGRAL MAX-POOLING MIST



Fine-Tuning for Search

e Use CNN features that were trained with
ImageNet

e Retraining with a task-specific dataset
achieve higher accuracy

e Can lower accuracy when using dissimilar
datasets

11 KAIST



Results
before &
after
retraining
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Neural codes trained on ILSVRC

Layer 5 9216 | 0.389 — 0.690* | 3.09
Layer 6 4006 | 0.435 0.392 0.749*% | 3.43
Layer 7 4096 | 0.430 — 0.736* | 3.39
After retraining on the Langdmarks dataget
Layer 5 9216 | 0.387 — 0.674* | 2.99
Layer 6 4096 | 0.545 0.512 0.793* | 3.29
Layer 7 4006 | 0.538 —_ 0.764* | 3.19
After retraining on turntable views\(Multi-view RGB-D)
Layer 5 9216 | 0.348 — 0.682* | 3.13
Layer 6 4006 | 0.393 0.351 0.754* | 3.56
Layer 7 4096 | 0.362 — 0.730*% | 3.53

Landmark dataset has similar images to Oxford

Ack.: Neural Codes for Image Retrieval
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Dimension Reduction

e CNN features (4096D) are robust to PCA

compression
e Maintain accuracy by 256 D
Dimensions 16 32 64 128 256 512
Oxford
Layer 6 0.328 | 0.390 | 0.421 | 0.433 | 0.435 | 0.435
Layer 6 + landmark retraining | 0.418 | 0.515 | 0.548 | 0.557 | 0.557 | 0.557
Layer 6 + turntable retraining | 0.289 | 0.349 | 0.377 | 0.391 | 0.392 | 0.393
KAIST



Image Classification and
Retrieval are ONE [ICMR 15]

e Handle the classification and search in a
unified framework

e Uses region proposals, and nearest neighbor
search for both problems

e Image search (kNN) is transductive
learning
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Regional Attention Based Deep
Feature for Image Retrieval

e Apply the attention (or
saliency) to regional
features for image retrieval

o Train attention weights based = ==

(a) Sheep - 26%, Cow - 17% (b) Importance map of ‘sheep’

on classification ok Toch (ol
R-MAC module ﬁ
- )
Max Post-
-.[ pool H processing ]_’

{72 P fl = [Afl.lr"'r}i,k]
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HardNet: Deep Learning based
Local Features

e Propose a local descriptor learning loss
e Similar to a triplet loss
e Get a higher matching accuracy than SIFT

e Triplet loss w/ anchor, its positive, and its
negative

e Compute feature in a way: D(a,p) < D(a,n)

Working hard to know your neighbor's margins: Local descriptor
16 learning loss, NIPS KAIST
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Sampling Procedure

e Given an anchor patch a,, we extract its
positive patch p,

e Use traditional matching techniques (e.g., DoG)
¢ Find its hard negative

Batch of input patches Descriptors
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Distance matrix

D = pdist(a, p)

d(-aza pl)
d(as,py)

d(ay,p,)

d(ay,py) d(ay,p2) d(ay,p3) d(ay, ps)
- p‘l'min

Final triplet
(one of n in batch)

1 P1) = select a,

d(a,, P4 - e d(az
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Find a patch that
is incorrectly
close to a,

Find a patch that
Is incorrectly
close to p,

Between two
patches, pick the
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Model Architecture

e Input: 32x32 grayscale input patches
e Output: 128D descriptor

‘ 3x3 Conv 3x3 Conv 3x3 Conv 3x3 Conv

pad 1 pad 1 pad1/2 pad 1
—_— —_—>

BN + RelU BN + RelU BN + RelU BN + RelU

1
3x3 Conv 3x3 Conv
pa d1/2 pa d1 8x8 Conv \
_
BN + RelU BN + RelU BN+ L2Norm
128

18 _KAIST
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Performance Comparisons over

Prior Features

e Overall, it shows better accuracy, as it is

trained with additional datasets
e BoW: Bag-of-Words, QE: Query Expansion, SV:

Spatial Verification

Oxford5Sk Paris6k
Descriptor BoW BoW+SV BoW+QE BoW BoW+SV  BoW+QE
TFeat-M* [23] 46.7 55.6 T2.2 43.8 51.8 635.3
RootSIFT [10]  55.1 63.0 78.4 59.3 63.7 76.4
L2Net+ [24] 59.8 .1 80.4 63.0 66.6 172
HardNet 59.0 67.6 83.2 61.4 67.4 i
HardNet+ 59.8 68.8 83.0 61.0 67.0 TeS
HardNet++ 60.8 69.6 84.5 65.0 70.3 79.1

KAIST
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Limitations of Image Search

Difficult

I
I
""""" T

I
I
I
I
I
I
I
I

| Reflective

s : surface
Igi

Planar :
Textured |
I
I
I
I

Transparent Non Rigid

Ack: Vijay Chandrasekhar

e Large-scale video retrieval

e 30 frames per sec., 5 billion shared video at
youtube KAIST
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Applications and Extension of
Image Search

e Content and context based hashing, indexing,
search and retrieval of multimedia data

e Multimodal or cross-modal content analysis and
retrieval

e Advanced descriptors and similarity metrics for
multimedia data

e Complex multimedia event detection and
recounting

Ack: Call for papers of ACM ICMR KAIST



Applications and Extension of
Image Search

e Learning and relevance feedback and HCI issues
in multimedia retrieval

e Query models and languages for multimedia
retrieval

e Fine-grained visual search
e Image/video summarization and visualization
e Mobile visual search

23 KAIST
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Class Objectives were:

e CNN based approaches

e Consider different regions within or outside the
end-to-end training

e Utilize attention and local features
e Discuss applications

e Discussed limitations of current techniques
and future research directions
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Homework for Every Class

e Come up with one question on what we have
discussed today

e Write questions three times

e Go over recent papers on image search, and submit
their summary before Tue. class

25 KAIST



