Image Search with Deep Learning

Sung-Eui Yoon (윤성의) KAIST

http://sgvr.kaist.ac.kr

Class Objectives are:

- CNN based approaches
 - Consider different regions, attention, and local features
 - Discuss applications

- At the prior class:
 - Discussed unsupervised hashing techniques based on hyperplanes and hyperspheres
 - Talked about supervised approach using deep learning

PA2

- Apply binary code embedding and inverted index to PA1
 - k-means or product quantization (PQ) for inverted index
 - Spherical hashing or PQ for binary code embedding

ImageNet Classification with Deep Convolutional Neural Networks [NIPS 12]

- Rekindled interest on CNNs
 - Use a large training images, ImageNet, of 1.2 M labelled images
 - Use GPU w/ rectifying non-linearities

Tested on ILSVRC-2010

Neural Codes for Image Retrieval [ECCV 14]

 Uses top layers of CNNs as high-level global descriptors (Neural Codes) for image search

Sum Pooling and Centering Priors

- Inspired by many prior aggregated features (e.g., BoW)
 - Use convolution layers as local features
- Aggregation

$$\psi_1(I) = \sum_{y=1}^{H} \sum_{x=1}^{W} f_{(x,y)}$$

- Simply sums those local features or
- Considers centering priors w/ varying weights

Method	Holidays	Oxford5K (full)	Oxford105K (full)	UKB
Fisher vector, k=16	0.704	0.490	_	_
Fisher vector, k=256	0.672	0.466		
Triangulation embedding, k=1	0.775	0.539	1	_
Triangulation embedding, k=16	0.732	0.486		_
Max pooling	0.711	0.524	0.522	3.57
Sum pooling (SPoC w/o center prior)	0.802	0.589	0.578	3.65
SPoC (with center prior)	0.784	0.657	0.642	3.66

Localization: Faster R-CNN

 Insert a Region Proposal Network (RPN) after the last convolutional layer

- RPN trained to produce region proposals directly
 - No need for external region proposals!

 Use RoI pooling and an upstream classifier and bbox regressor just like Fast R-CNN

Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015

Slide credit: Ross Girschick

Faster R-CNN: Results

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 seconds	2 seconds	0.2 seconds
(Speedup)	1x	25x	250x
mAP (VOC 2007)	66.0	66.9	66.9

Fast R-CNN: rely upon external region proposal

R-MAC: Regional Maximum Activation of Convolutions

- Use maximum activation of convolutions for translation invariance
- Consider uniformly generated regions with different scales, and sum their features

Fine-Tuning for Search

- Use CNN features that were trained with ImageNet
- Retraining with a task-specific dataset achieve higher accuracy
 - Can lower accuracy when using dissimilar datasets

Fine-Tuning for Search

Results before & after retraining

Neural codes trained on ILSVRC							
Layer 5	9216	0.389	_	0.690*	3.09		
Layer 6	4096	0.435	0.392	0.749*	3.43		
Layer 7	4096	0.430		0.736*	3.39		
After retraining on the Landmarks dataset							
Layer 5	9216	0.387		0.674*	2.99		
Layer 6	4096	0.545	0.512	0.793*	3.29		
Layer 7	4096	0.538	_	0.764*	3.19		
After retraining on turntable views (Multi-view RGB-D)							
Layer 5	9216	0.348		0.682*	3.13		
Layer 6	4096	0.393	0.351	0.754*	3.56		
Layer 7	4096	0.362		0.730*	3.53		

Landmark dataset has similar images to Oxford

Dimension Reduction

- CNN features (4096D) are robust to PCA compression
 - Maintain accuracy by 256 D

Dimensions	16	32	64	128	256	512
Oxford						
Layer 6	0.328	0.390	0.421	0.433	0.435	0.435
Layer 6 + landmark retraining	0.418	0.515	0.548	0.557	0.557	0.557
Layer 6 + turntable retraining	0.289	0.349	0.377	0.391	0.392	0.393

Image Classification and Retrieval are ONE [ICMR 15]

- Handle the classification and search in a unified framework
 - Uses region proposals, and nearest neighbor search for both problems
- Image search (kNN) is transductive learning

Regional Attention Based Deep Feature for Image Retrieval

- Apply the attention (or saliency) to regional features for image retrieval
 - Train attention weights based on classification

(a) Sheep - 26%, Cow - 17% (b) Importance map of 'sheep'

Ack. Tech talk

HardNet: Deep Learning based Local Features

- Propose a local descriptor learning loss
 - Similar to a triplet loss
 - Get a higher matching accuracy than SIFT
- Triplet loss w/ anchor, its positive, and its negative
 - Compute feature in a way: D(a, p) < D(a, n)

Sampling Procedure

- Given an anchor patch a_1 , we extract its positive patch p_1
 - Use traditional matching techniques (e.g., DoG)
- Find its hard negative

Find a patch that is incorrectly close to a_1

Find a patch that is incorrectly close to p_1

Between two patches, pick the worst

Model Architecture

- Input: 32x32 grayscale input patches
- Output: 128D descriptor

Performance Comparisons over Prior Features

- Overall, it shows better accuracy, as it is trained with additional datasets
 - BoW: Bag-of-Words, QE: Query Expansion, SV: Spatial Verification

	Oxford5k			Paris6k		
Descriptor	BoW	BoW+SV	BoW+QE	BoW	BoW+SV	BoW+QE
TFeat-M* [23]	46.7	55.6	72.2	43.8	51.8	65.3
RootSIFT [10]	55.1	63.0	78.4	59.3	63.7	76.4
L2Net+ [24]	59.8	67.7	80.4	63.0	66.6	77.2
HardNet	59.0	67.6	83.2	61.4	67.4	77.5
HardNet+	59.8	68.8	83.0	61.0	67.0	77.5
HardNet++	60.8	69.6	84.5	65.0	70.3	79.1

Summary

Limitations of Image Search

Large-scale video retrieval

 30 frames per sec., 5 billion shared video at youtube

Ack: Vijay Chandrasekhar

Applications and Extension of Image Search

- Content and context based hashing, indexing, search and retrieval of multimedia data
- Multimodal or cross-modal content analysis and retrieval
- Advanced descriptors and similarity metrics for multimedia data
- Complex multimedia event detection and recounting

Applications and Extension of Image Search

- Learning and relevance feedback and HCI issues in multimedia retrieval
- Query models and languages for multimedia retrieval
- Fine-grained visual search
- Image/video summarization and visualization
- Mobile visual search

Class Objectives were:

- CNN based approaches
 - Consider different regions within or outside the end-to-end training
 - Utilize attention and local features
 - Discuss applications
- Discussed limitations of current techniques and future research directions

Homework for Every Class

- Come up with one question on what we have discussed today
 - Write questions three times
- Go over recent papers on image search, and submit their summary before Tue. class

