CS688: Web-Scale Image Search Deep Neural Nets and Features

Sung-Eui Yoon (윤성의)

Course URL: http://sgvr.kaist.ac.kr/~sungeui/IR

Class Objectives

- Browse main components of deep neural nets
 - Does not aim for giving in-depth knowledge, but for giving a quick review on the topic
 - Look for other materials if you want to know more
 - Remember: this is one of the prerequisite of taking this course
- At the prior class:
 - Automatic scale selection, and LoG/DoG
 - SIFT as a local descriptor

Questions?

• What are the difference and relationship between CV and IR? Many applications you have talked about in the first class might be normally regarded as Computer Vision applications. I thought IR is a small part of CV before, but after the class I thought it could cover a very large part of CV. How do you think?

High-Level Messages

- Deep neural nets provide low-level and high-level features
 - We can use those features for image search
- Achieve the best results in many computer vision related problems

High-Level Messages

- Many features and codes are available
 - Caffe [Krizhevsky et al., NIPS 2012]
 - Very deep convolutional networks [Simonyan et al., ICLR 15]; using up to 19 layers
 - Deep Residual Learning [He et al., CVPR 16]; using up to 152 layers
- Model Zoo github.com/BVLC/caffe/wiki/ Model-Zoo

High-Level Messages

- Perform the end-to-end optimization w/ lots of training data
 - Aims not only features, but the accuracy of any end-to-end systems including image search
 - Different from manually created descriptors (e.g., SIFT)

Deep Learning for Vision

Adam Coates

Stanford University

(Visiting Scholar: Indiana University, Bloomington)

What do we want ML to do?

Given image, predict complex high-level patterns:

"Cat"

Object recognition

Detection

Segmentation
[Martin et al., 2001]

How is ML done?

Machine learning often uses hand-designed feature extraction.

"Deep Learning"

- Deep Learning
 - Train multiple layers of features from data.
 - Try to discover useful *representations*

"Deep Learning"

- Why do we want "deep learning"?
 - Some decisions require many stages of processing.
 - We already hand-engineer "layers" of representation.
 - Algorithms scale well with data and computing power.
 - In practice, one of the most consistently successful ways to get good results in ML.

Have we been here before?

> Yes: Basic ideas common to past ML and neural networks research.

►No.

- Faster computers; more data.
- Better optimizers; better initialization schemes.
 - "Unsupervised pre-training" trick
 [Hinton et al. 2006; Bengio et al. 2006]
- Lots of empirical evidence about what works.
 - Made useful by ability to "mix and match" components.
 [See, e.g., Jarrett et al., ICCV 2009]

Real impact

 DL systems are high performers in many tasks over many domains.

Image recognition

Speech recognition

NI P

[E.g., Krizhevsky et al., 2012] [E.g., Heigold et al., 2013] [E.g., Socher et al., ICML 2011; Collobert & Weston, ICML 2008

Crash Course

MACHINE LEARNING REFRESHER

Supervised Learning

Given labeled training examples:

$$\mathcal{X} = \{(x^{(i)}, y^{(i)}) : i = 1, \dots, m\}$$

• For instance: $x^{(i)}$ = vector of pixel intensities. $y^{(i)}$ = object class ID.

- Goal: find f(x) to predict y from x on training data.
 - Hopefully: learned predictor works on "test" data.

Logistic Regression

- Simple binary classification algorithm

– Start with a function of the form:
$$f(x;\theta) \equiv \sigma(\theta^\top x) = \frac{1}{1 + \exp(-\theta^\top x)}$$

- Interpretation: f(x) is probability that y = 1.

– Find choice of θ that minimizes objective:

$$\mathcal{L}(heta) = -\sum_{i}^{m} 1\{y^{(i)} = 1\} \log(f(x^{(i)}; heta)) + \mathbb{P}(y^{(i)} = 0|x^{(i)})$$

From Ng's slide

Optimization

- How do we tune θ to minimize $\mathcal{L}(\theta)$?
- One algorithm: gradient descent
 - Compute gradient:

$$\nabla_{\theta} \mathcal{L}(\theta) = \sum_{i}^{m} x^{(i)} \cdot (y^{(i)} - f(x^{(i)}; \theta))$$

– Follow gradient "downhill":

$$\theta := \theta - \eta \nabla_{\theta} \mathcal{L}(\theta)$$

- Stochastic Gradient Descent (SGD): take step using gradient from only small batch of examples.
 - Scales to larger datasets. [Bottou & LeCun, 2005]

Features

 Huge investment devoted to building applicationspecific feature representations.

Keypoint descriptor

Super-pixels [Gould et al., 2008; Ren & Malik, 2003]

Spin Images [Johnson & Hebert, 1999]

Extension to neural networks

SUPERVISED DEEP LEARNING

Basic idea

- We saw how to do supervised learning when the "features" $\phi(x)$ are fixed.
 - Let's extend to case where features are given by tunable functions with their own parameters.

$$\mathbb{P}(y=1|x) = f(x;\theta,W) = \sigma(\theta^{\top}\underline{\sigma(Wx)})$$

Outer part of function is same as logistic regression.

Inputs are "features"---one feature for each row of W:

$$egin{bmatrix} \sigma(w_1x) \ \sigma(w_2x) \ \cdots \ \sigma(w_Kx) \ \end{pmatrix}$$

Basic idea

 To do supervised learning for two-class classification, minimize:

$$\mathcal{L}(\theta, W) = -\sum_{i=1}^{m} 1\{y^{(i)} = 1\} \log(f(x^{(i)}; \theta, W)) + 1\{y^{(i)} = 0\} \log(1 - f(x^{(i)}; \theta, W))$$

 Same as logistic regression, but now f(x) has multiple stages ("layers", "modules"):

$$f(x; \theta, W) = \sigma(\theta^{\top} \sigma(Wx))$$

$$x \longrightarrow \sigma(Wx) \longrightarrow h \longrightarrow \sigma(\theta^{\top} h) \longrightarrow f$$

Intermediate representation ("features")

Prediction for $\mathbb{P}(y=1|x)$

Neural network

• This model is a sigmoid "neural network":

Neural network

Can stack up several layers: Must lear of internal

Must learn multiple stages of internal "representation".

Back-propagation

• Minimize:

$$\mathcal{L}(\theta, W) = -\sum_{i=1}^{m} 1\{y^{(i)} = 1\} \log(f(x^{(i)}; \theta, W)) + 1\{y^{(i)} = 0\} \log(1 - f(x^{(i)}; \theta, W))$$

• To minimize $\mathcal{L}(\theta, W)$ we need gradients:

$$\nabla_{\theta} \mathcal{L}(\theta, W)$$
 and $\nabla_{W} \mathcal{L}(\theta, W)$

- Then use gradient descent algorithm as before.
- Formula for $\nabla_{\theta} \mathcal{L}(\theta, W)$ can be found by hand (same as before); but what about W?
 - Beyond the scope of this course

Training Procedure

- Collect labeled training data
 - For SGD: Randomly shuffle after each epoch!

$$\mathcal{X} = \{(x^{(i)}, y^{(i)}) : i = 1, \dots, m\}$$

- For a batch of examples:
 - Compute gradient w.r.t. all parameters in network.

$$\Delta_{\theta} := \nabla_{\theta} \mathcal{L}(\theta, W)$$

$$\Delta_W := \nabla_W \mathcal{L}(\theta, W)$$

Make a small update to parameters.

$$\theta := \theta - \eta_{\theta} \Delta_{\theta}$$

$$W := W - \eta_W \Delta_W$$

Repeat until convergence.

Training Procedure

- Historically, this has not worked so easily.
 - Non-convex: Local minima; convergence criteria.
 - Optimization becomes difficult with many stages.
 - "Vanishing gradient problem"
 - Hard to diagnose and debug malfunctions.
- Many things turn out to matter:
 - Choice of nonlinearities.
 - Initialization of parameters.
 - Optimizer parameters: step size, schedule.

Nonlinearities

- Choice of functions inside network matters.
 - Sigmoid function turns out to be difficult.
 - Some other choices often used:

[Nair & Hinton, 2010]

Summary

- Supervised deep-learning
 - Practical and highly successful in practice. A general-purpose extension to existing ML.
 - Optimization, initialization, architecture matter!

Resources

Deep Learning

- SPRING 2020 · NYU CENTER FOR DATA SCIENCE
- INSTRUCTORS: Yann LeCun & Alfredo Canziani
- https://atcold.github.io/pytorch-Deep-Learning/

Stanford Deep Learning tutorial:

http://ufldl.stanford.edu/wiki

Deep Learning tutorials list:

http://deeplearning.net/tutorials

IPAM DL/UFL Summer School:

http://www.ipam.ucla.edu/programs/gss2012/

ICML 2012 Representation Learning Tutorial

http://www.iro.umontreal.ca/~bengioy/talks/deep-learning-tutorial-2012.html

References

http://www.stanford.edu/~acoates/bmvc2013refs.pdf

Overviews:

Yoshua Bengio,

"Practical Recommendations for Gradient-Based Training of Deep Architectures"

Yoshua Bengio & Yann LeCun, "Scaling Learning Algorithms towards AI"

Yoshua Bengio, Aaron Courville & Pascal Vincent, "Representation Learning: A Review and New Perspectives"

Software:

Theano GPU library: http://deeplearning.net/software/theano

SPAMS toolkit: http://spams-devel.gforge.inria.fr/

Class Objectives were:

- Browse main components of deep neural nets
 - Logistic regression w/ its loss function
 - Stack those ones by multiple layers
 - Optimize it w/ stochastic gradient descent
 - Use weights of a layer as features

Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today
 - 1 for typical questions (that were answered in the class)
 - 2 for questions with thoughts or that surprised me
- Write questions 3 times before the mid-term exam
 - Write a question about one out of every four classes
 - Multiple questions in one time will be counted as one time
- Common questions are compiled at the Q&A file
 - Some of questions will be discussed in the class
- If you want to know the answer of your question, ask me or TA on person

