CS688: Web-Scale Image Search
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Class Objectives

e Review basics of convolution neural nets
(CNNs)

e At the prior class:
e Browsed main components of deep neural nets
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Convolution Neural Nets (CNNs)

e Deep neural nets, especially, CNNs, provide
low-level and high-level features

e We can use those features for image search

e Achieve the best results in many computer
vision related problems
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Working with images

* Major factors for features:
— Want to have “selective” and “invariant” features.

— Try to exploit knowledge of images to accelerate
training or improve performance.

* Generally try to avoid wiring detailed visual
knowledge into system --- prefer to learn.




Local connectivity

* Neural network view of single neuron:

—>More parameters to train.

- Higher computational expense.
// \\\ —>Turn out not to be helpful in practice.
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‘ Extremely large number of connections.

.




Local connectivity

 Reduce parameters with local connections.
— Weight vector is a spatially localized “filter”.




Local connectivity

 Sometimes think of neurons as viewing small
adjacent windows.
— Specify connectivity by the size (“receptive field” size)
and spacing (“step” or “stride”) of windows.

e Typical RF size =5 to 20
* Typical step size = 1 pixel up to RF size.

h _ WZ Rows of W are sparse.
Only weights connecting to inputs

in the window are non-zero.




Local connectivity

e Spatial organization of filters means output features

can also be organized like an image.

— X,Y dimensions correspond to X,Y position of neuron

window.

— “Channels” are different features extracted from same
spatial location. (Also called “feature maps”, or “maps”.)

X spatial location

1-dimensional example: ! 1
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1D input

“Channel” or “map” index




Local connectivity

» We can treat output of a layer like an image and re-use the

same tricks.

1-dimensional example:

X spatial location

>

“Channel” or “map” index

1D input




Weight-Tying or
Convolutional Network

» Even with local connections, may still have too many weights.

— Images tend to be “stationary”: different patches tend to
have similar low-level structure.

X spatial location
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1D input

Each unique filter is spatially convolved with the input to produce
responses for each map. [LeCun et al., 1989; LeCun et al., 2004]




Convolution Layer

32x32x3 image -> preserve spatial structure

32 height

3 depth



ConVOI UtiOn Layer Filters always extend the full
— depth of the input volume

32x32x3 image /
5x5x3 filter
32 I’I
Convolve the filter with the image
l.e. “slide over the image spatially,

computing dot products”
32




Convolution Layer
__— 32x32x3 image

5x5x3 filter w
2
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)
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~~ 1 number:




Convolution Layer

activation map

__— 32x32x3 image

5x5x3 filter /
2
@>@ ”

convolve (slide) over all

spatial locations
32 28




Convolution Layer
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consider a second, green filter

32x32x3 image
Sx5x3 filter

convolve (slide) over all
spatial locations

activation maps
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Ack. Fei-Fei Li & Justin Johnson & SerenaYeung



For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:
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32

Convolution Layer

activation maps

28

28

We stack these up to get a “new image” of size 28x28x6!

Ack. Fei-Fei Li & Justin Johnson & SerenaYeung



Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions
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Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions
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RelLU
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9X5x6
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Visualization of VGG-16 by Lane McIntosh. VGG-16

PreVieW [Zeller and Ferg us 2013] architecture from [Simonyan and Zisserman 2014].
Low-level Mid-level High-level Linearly

features features toatures || Separable —
classifier

VGG-16 Conv1 1 VGG-16 Conv3 2

Ack. Fei-Fei Li & Justin Johnson & SerenaYeung



Contrast Normalization

 Empirically useful to soft-normalize magnitude of
groups of neurons.

— Subtract out the local mean first.

-BEIBABE

Giassa.net

[Jarrett et al., ICCV 2009]




Pooling

* Functional layers designed to represent invariant
features.

— Combined with convolution, corresponds to hard-wired
translation invariance.

e Usually fix weights to local box or Gaussian filter.
— Easy to represent max-, average-, or 2-norm pooling.

[Scherer et al., ICANN 2010]
[Boureau et al., ICML 2010]




Application: Image-Net

e System from Krizhevsky et al., NIPS 2012:
— Convolutional neural network.
— Local connectivity.
— Max-pooling.
— Rectified linear units (ReLu).
— Contrast normalization.
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Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input

1 —
3072

Wax

10 x 3072
weights

Fei-Fei Li & Justin Johnson & Serena Yeung

activation
— 1 (O
/4 10
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Lecture 5-26  April 17,2018




Application: Image-Net

* Top result in LSVRC 2012: ~85%, Top-5 accuracy.
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More applications

« Detection: combine classifiers with sliding-window architecture.
— Economical when used with convolutional nets.

Pierre Sermanet (2010) 2>

 Robotic grasping. [Lenz et al., RSS 2013]

http://www.youtube.com/watch?v=f9Cuzql1SkE
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Class Objectives were:

e Study convolution neural nets (CNNs)

e At the prior class:
e Browsed main components of deep neural nets
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Summary up to Now

/_\[Harris corner detectoa

Features

CNN featurea

Logistic regressiorD—(Cross entrop)a

Stochastlc gradlenj

Deep learning descent

Convolution neural neta
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Next Time
e Bag-of-visual-Words (BoW) model
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Homework for Every Class

e Go over the next lecture slides

e Come up with one question on what we have
discussed today

e 1 for typical questions (that were answered in the class)
e 2 for questions with thoughts or that surprised me

e Write questions 3 times before the mid-term exam
e Write a question about one out of every four classes

e Multiple questions in one time will be counted as one time

e Common questions are compiled at the Q&A file
e Some of questions will be discussed in the class

e If you want to know the answer of your question,
ask me or TA on person
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