
CS686:
Path Planning for Point Robots

Sung-Eui Yoon

(윤성의)

Course URL:

http://sgvr.kaist.ac.kr/~sungeui/MPA

2

Class Objectives

● Motion planning framework
● Representations of robots and space

● Discretization into a graph

● Search methods

● Ch. 1 of my book

● Last time
● Class overview and grading policy w/ HWs:

research oriented course

● Half lectures and half presentations from
students

4 Courtesy of Prof. David Hsu

5

free space

start

goal

free path

Problem

6

semi-free path

Problem

7

Types of Path Constraints

● Local constraints
● Lie in free space

● Global constraints
● Have minimal length

● Differential constraints
● Cannot change the car

orientation instantly

𝑳

𝜽

𝝓

𝝓

𝒙

𝒚

See Ch. 3 (Kinematic Car Model) of my draft

𝒅𝜽

𝒅𝒕
=
𝒗

𝑳
𝒕𝒂𝒏 𝝓

http://sgvr.kaist.ac.kr/~sungeui/mp/

http://sgvr.kaist.ac.kr/~sungeui/mp/

8

Configuration Space:
Tool to Map a Robot to a Point

Workspace Configuration space

(C-Space)

9

Continuous representation
(configuration space formulation)

Discretization
(random sampling, processing critical geometric events)

Graph searching
(blind, best-first, A*)

Motion-Planning Framework

10

11

Visibility Graph

● A visibility graph is a graph such that
● Nodes: s, g, or obstacle vertices

● Edges: An edge exists between nodes u and v if
the line segment between u and v is an
obstacle edges or it does not intersect the
obstacles

g

s

12

Visibility Graph

● A visibility graph
● Introduced in the late 60s

● Can produce shortest paths in 2-D
configuration spaces

g

s

13

Simple Algorithm

● Input: s, q, polygonal obstacles

● Output: visibility graph G

1: for every pair of nodes u, v

2: if segment (u, v) is an obstacle edge then

3: insert edge (u, v) into G;

4: else

5: for every obstacle edge e

6: if segment (u, v) intersects e

7: go to (1);

8: insert edge (u, v) into G;

9: Search a path with G using A*

// check collisions

14

Computation Efficiency

1: for every pair of nodes u, v

2: if segment (u, v) is an obstacle edge then

3: insert edge (u, v) into G;

4: else

5: for every obstacle edge e

6: if segment (u, v) intersects e

7: go to (1);

8: insert edge (u, v) into G;

● Simple algorithm: O(n3) time

● More efficient algorithms
● Rotational sweep O(n2 log n) time, etc.

● O(n2) space

O(n2)

O(n)

O(n)

15

Continuous representation
(configuration space formulation)

Discretization
(random sampling, processing critical geometric events)

Graph searching
(blind, best-first, A*)

Motion-Planning Framework

16

Graph Search Algorithms

● Breadth, depth-first, best-first

● Dijkstra’s algorithm

● A*

17

18

19

20

Traverse the graph by using the queue,

resulting in the level-by-level traversal

21

Dijkstra’s Shortest Path
Algorithm

● Given a (non-negative) weighted graph,
two vertices, s and g:
● Find a path of minimum total weight between

them

● Also, find minimum paths to other vertices

● Has O (|V| lg|V| + |E|), where V & E refer
vertices & edges

22

Dijkstra’s Shortest Path
Algorithm

● Set S

● Contains vertices whose final shortest-path cost has

been determined

● DIJKSTRA (G, s):
Input: G is an input graph, s is the source

1. Initialize-Single-Source (G, s)

2. S  empty

3. Queue  Vertices of G

4. While Queue is not empty

5. Do u  min-cost from Queue

6. S  union of S and {u}

7. for each vertex v in Adj [u]

8. do RELAX (u, v)

23

Dijkstra’s Shortest Path
Algorithm

0

3

10

1

∞

∞
0

3

10

1

3

10
0

3

10

1

3

4

Yellow vertices are in a set with shortest costs

White vertices are in the queue.

Shaded one is chosen for relaxation.

Compute optimal cost-to-come at each iteration

g
s gs gs

24

A* Search Algorithm

● An extension of Dijkstra’s algorithm based
on a heuristic estimate
● Conservatively estimate the cost-to-go from a

vertex to the goal

● The estimate should not be greater than the
optimal cost-to-go

● Sort vertices based on “cost-to-come + the
estimated cost-to-go”

● Can find optimal solutions

with fewer steps

free space

s

g

25

K* Algorithm (Video)

● Recursive Path Planning Using Reduced
States for Car-like Vehicles on Grid Maps
● IEEE Transactions on Intelligent Transportation

System

● A* and its variants are quite commonly
used for its optimality and high
performance

http://sglab.kaist.ac.kr/kstar/

26

27

Computational Efficiency

● Running time O(n3)
● Compute the visibility graph

● Search the graph

● Space O(n2)

● Can we do better?
● Lead to classical approaches such as roadmap

28

Class Objectives were:

● Motion planning framework
● Representations of robots and space

● Discretization into a graph

● Search methods

● Ch. 1 of my book

29

Homework

● Browse 2
ICRA/IROS/RSS/CoRL/WAFR/TRO/IJRR
papers
● Submit it online before the Mon. Class

● Example of a summary (just a paragraph)
Title: XXX XXXX XXXX

Conf./Journal Name: ICRA, 2023

Summary: this paper is about accelerating the

performance of collision detection. To achieve its goal,

they design a new technique for reordering nodes,

since by doing so, they can improve the coherence

and thus improve the overall performance.

30

Valid Papers for Paper
Presentation

● Related to the course theme

● Top-tier conf/journals
● No arxiv paper, unless it has meaningful

citation counts (say, 10 per year)

● Recent ones
● Published at 2019~2023

31

Homework for Every Class

● Go over the next lecture slides

● Come up with one question on what we
have discussed today and submit at the end
of the class
● 1 for typical questions

● 2 for questions with thoughts or that surprised
me

● Write a question two times before the mid-
term exam; submit at the course webpage

32

Next Time….

● Classic path planning algorithms

