CS686: Probabilistic Roadmaps

Sung-Eui Yoon (윤성의)

Course URL: http://sgvr.kaist.ac.kr/~sungeui/MPA

Announcements

- Mid-term exam
 - closed book: simple reviews on lecture materials)
 - 11am on Oct-18 (Wed) at the class time

Deadlines

- Declare project team members
 - By 9/26 at KLMS
- Declare two papers for student presentations
 - First come, first served
 - Paper title, conf. name, publication year
 - by 10/10 at KLMS
 - Choose papers from 2019 ~ now, published on top-tier conf./journals
- Student presentations will start right after the mid-term exam
 - 2 talks per each class; 15 min for each talk
 - Each presenter needs two short quiz

Project Guidelines: Project Topics

- Any topics related to the course theme are okay
 - You can find topics by browsing recent papers
- You can bring your own research to the class, only if it is related to the course theme
 - You need to get a permission from me for this

Expectations

- Mid-term project presentation
 - Introduce problems and explain why it is important
 - Give an overall idea on the related work
 - Explain what problems those existing techniques have
 - (Optional) explain how you can address those problems, and try out existing codes
 - Explain roles of each member

Expectations

- Final-term project presentation
 - Review materials that you talked for your midterm project
 - Present your ideas that can address problems of those state-of-the-art techniques
 - Give your qualitatively (or intuitive) reasons how your ideas address them
 - Also, explain expected benefits and drawbacks of your approach
 - (Optional) backup your claims with quantitative results collected by some implementations
 - Explain roles of each member

A few more comments

- Start to implement a paper, if you don't have any clear ideas
 - While you implement it, you may get ideas about improving it
- Or, find codes that you can start with

Final-project evaluation sheet

You name:

ID:

Score table: higher score is better.

Speaker	Novelty of the project and idea (1 ~ 5)	Practical benefits of the method (1 ~ 5)	Completeness level of the project (1 ~ 5)	Total score (3 ~ 15)	Role of each student is clear and well balanced? (Yes or No)
XXX					
YYY					

Class Objectives

- Understand probabilistic roadmap (PRM) approaches
 - Multi-query PRMs

- Last time:
 - Proximity queries: collision detection and distance computation

Difficulty with Classic Approaches

- Running time increases exponentially with the dimension of the configuration space
 - For a d-dimension grid with 10 grid points on each dimension, how many grid cells are there?

10^d

 Several variants of the path planning problem have been proven to be PSPACEhard

Completeness

- Complete algorithm → Slow
 - A complete algorithm finds a path if one exists and reports no otherwise
 - Example: Canny's roadmap method
- Heuristic algorithm → Unreliable
 - Example: potential field
- Probabilistic completeness
 - Intuition: If there is a solution path, the algorithm will find it with high probability

Probabilistic Roadmap (PRM): multiple queries

Assumptions

- Static obstacles
- Many queries to be processed in the same environment
- Examples
 - Navigation in static virtual environments
 - Robot manipulator arm in a workcell

Overview

- Precomputation: roadmap construction
 - Uniform sampling
 - Resampling (expansion)
- Query processing

Uniform sampling

```
Input: geometry of the moving object & obstacles
Output: roadmap G = (V, E)
1: V \leftarrow \emptyset and E \leftarrow \emptyset.
2:
   repeat
3:
   q \leftarrow a configuration sampled uniformly at random from C
4:
       if CLEAR (q) then
5:
         Add q to V.
         N_q \leftarrow a set of nodes in V that are close to q.
6:
6:
         for each q' \in N_q, in order of increasing d(q, q')
7:
            if LINK(q',q) then
8:
              Add an edge between q and q' to E.
```

The graph G is called a probabilistic roadmap The nodes in G are called milestones

Difficulty

Many small connected components

Resampling (expansion)

Failure rate

$$r(q) = \frac{\text{\#. failed LINK}}{\text{\#. LINK}}$$

Normalized weight

$$w(q) = \frac{r(q)}{\sum_{p} r(p)}$$

Resampling probability

$$Pr(q) = w(q)$$

Resampling (expansion)

Query processing

- ullet Connect $q_{
 m init}$ and $q_{
 m goal}$ to the roadmap
- Start at $q_{\rm init}$ and $q_{\rm goal}$, perform a random walk, and try to connect with one of the milestones nearby
- Try multiple times

Error

- If a path is returned, the answer is always correct
- If no path is found, the answer may or may not be correct. We hope it is correct with high probability.
 - Refer to Theoretical Analysis of my draft

$$P(Fail) \leq \frac{2L}{R} exp(-\alpha_D R^D N).$$

L: path lengths, N: # of samples, D is dimension R: the clearance between the robot and obstacles

$$\alpha_D = 2^{-D} \frac{\pi^{D/2}}{\Gamma(D/2+1)Vol(C_{free})}$$

Smoothing the path

Smoothing the path

Sampling Strategies

 Visibility-based Probabilistic roadmaps for Motion planning

- The Gaussian Sampling Strategy for PRM's
 - Sample near the boundaries of the C-space obstacles with higher probability

Visibility-based PRM

Computes a very compact roadmap

Visibility Domain

- Visibility domain of a free configuration q:
 - The grey region

Guard Nodes

The C-space fully captured by 'guard' nodes

Guard Nodes

The C-space fully captured by 'guard' nodes.

Guard Nodes

• The C-space fully captured by 'guard' nodes.

Connection Nodes

• The C-space being captured by 'guards' and 'connection' nodes.

Connection Nodes

• The C-space being captured by 'guards' and 'connection' nodes.

Connection Nodes

 The C-space fully captured by 'guards' and 'connection' nodes.

 We do not need any other additional node in the roadmap

Remarks

 Maintains a very compact roadmap, resulting in faster query time

• But:

- There is a tradeoff with high cost of processing each new milestone
- The problem of capturing the narrow passage effectively is still the same as in the basic PRM.

Summary

- What probability distribution should be used for sampling milestones?
- How should milestones be connected?
- A path generated by a randomized algorithm is usually jerky. How can a path be smoothed?
- Single-query PRMs were proposed, but RRT techniques are more widely used

Class Objectives were:

- Understand probabilistic roadmap (PRM) approaches
 - Multi-query PRMs

Next Time...

 RRT techniques and their recent advancements

Homework for Every Class

- Submit summaries of 2 ICRA/IROS/RSS/CoRL/TRO/IJRR papers
- Go over the next lecture slides
- Come up with two question submissions before the mid-term exam

