CS686 MPA 1st Paper Presentation

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning (IROS 2022)

2023.10.25.

1st year M.S. Student @KAST, SGVR Lab CHANMI LEE

Contents

- Overview
- Background
- Methodology
- Experimental Results
- Summary

Overview

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning

Purpose

- For Long-Horizon, Episodic Robotic Planning Task
 - Accelerating
 - Improve solution quality

Main Idea

- Use Parallel Monte Carlo Tree Search
- Use Batched Simulation
- ➔ PMBS

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning

Monte Carlo Tree Search (MCTS)

- MCTS
 - Heuristic search algorithm for decision processes
 - Build a search tree
 - Balancing exploration and exploitation
 - Iteratively performing 4 stages operations
 - Selection
 - Expansion
 - Simulation
 - Back propagation

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning

Monte Carlo Tree Search (MCTS)

• Iterate 4 stages

• Selection

- Select best node to grow tree
- Until terminal node or non-children node
- Criterion : Upper Confidence Bound (UCB)

$$\underset{n' \in children \, of \, n}{\operatorname{argmax}} \frac{Q(n')}{N(n')} + c \sqrt{\frac{2\ln(N(n))}{N(n')}}$$

Q(n) : sum of rewards for node n N(n) : number of times n was selected so far n' : child node

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning

Monte Carlo Tree Search (MCTS)

• Iterate 4 stages

- Expansion
 - Add new child node n' to the tree
 - (If it is not a terminal node)

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning

Monte Carlo Tree Search (MCTS)

• Iterate 4 stages

- Simulation
 - Carried out at new child node n'
 - Repeat select-expand-simulate until reached a terminal state
 - Terminal state \rightarrow yield reward

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning

Monte Carlo Tree Search (MCTS)

• Iterate 4 stages

Back propagation

- Obtained terminal reward
- Propagate back from n' to root node
- For all nodes along path,
 - \rightarrow update sum of reward Q(n)
 - \rightarrow increment the number of visit N(n)

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning

9

GPU-Based Physics simulators

- Leverage the power of GPU
 Commute relationships
- \rightarrow Compute physics simulations
- Can perform many calculations simultaneously

Batched Rigid-body Simulation

- Run multiple rigid-body simulations simultaneously in batched manner
- Speed up with better quality solution

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning

Parallel MCTS with Batched Simulation

- Preliminary ٠
 - Object-retrieval-from-clutter task ~ MDP < S, A, T, O, P >
 - State space (S)
 - $S_t = (robot_t, obj_t^1, obj_t^2, \dots, obj_t^n)$
 - $robot_t$: joint angles vector for time t Reward function (R)
 - obj_t^i : pose & geometry vector for time t
 - Action space (A)
 - $A = \{A^p, A^g\}$
 - $a^p = (x_s, y_s, x_g, y_g) \in A^p$: push action
 - $a^p = (x, y, z, \theta) \in A^g$: grasp action

- Transition function (T)
 - $T(a_t): s_t \to s_{t+1}$
- - $r = \{0, 1\}$
 - r = 1: target grasp, r = 0: don't grasp
- Observation space (0)
 - $o_t \in O^p$: top-down RGB-D images

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning

11

Parallel MCTS with Batched Simulation

- Algorithm 1: Parallel MCTS with Batched Simulation **Function** Main (s_t, o_t) while there is a target object in workspace do if the target object can be grasped (query GN) then Execute grasp the target object else Execute Parallel-MCTS (s_t) // Push **6** Function Parallel-MCTS(s) Create root node n_0 with state s 7 $es_level \leftarrow 1$ // Early stop level 8 graspable_nodes $\leftarrow \emptyset$ 9 while (within time budget) and (depths of all 10 graspable_nodes are greater than es_level) **do** $[(n^1, a^1), \dots, (n^{N_e}, a^{N_e})] \leftarrow \text{Selection}(n_0)$ 11 Reset all $\hat{N}(n)$ to 0 12 $[n'^1, \ldots, n'^{N_e}] \leftarrow$ 13 $\texttt{Expansion}([(n^1, a^1), \dots, (n^{N_{\mathsf{e}}}, a^{N_{\mathsf{e}}})])$ for n' in $[n'^1, ..., n'^{N_e}]$ do 14 if $GC(n'(o)) > R_c^*$ then 15 graspable_nodes \leftarrow graspable_nodes $\cup \{n'\}$ 16 if all nodes at es_level -1 are fully expanded or 17 terminal **then** $es_level \leftarrow es_level + 1$ 18 $[1, \ldots, r^{N_{\mathbf{e}}}] \leftarrow \mathtt{Simulation}([n'_1, \ldots, n'_{N_{\mathbf{e}}}])$ 19 Backpropagation ($[(n'^{1}, r^{1}), ..., (n'^{N_{e}}, r^{N_{e}})]$) 20 return the a^p that leads to best child node of root. 21 ranked by Eq. 2
- Main Function
 - Grasp object or do parallel-MCTS to push objects

- Grasp Network : provide grasp action
- Action Sampler : sampling actions
- Grasp Classifier : grasp probability → grasp ability

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding (

Parallel MCTS with Batched Simulation

Ation Main Function

Fig. 3: Sampled push actions.

Grasp Grasp probability: 0.57 probability: 0.99

- Grasp object or do parallel-MCTS to push objects

- Grasp Network : provide grasp action
- Action Sampler : sampling actions
- Grasp Classifier : grasp probability → grasp ability

•

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning

Parallel MCTS with Batched Simulation

- Parallel-MCTS
 - Exploit parallelism within MCTS
 - → Improve performance
 - Use leaf parallelism
 - Select one leaf node n'
 - Multiple processors run simulation from n'
 - Get push action with 4 steps
 - Selection / Batch Parallel Expansion /
 Batch Parallel Simulation / Back propagation

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning

Parallel MCTS with Batched Simulation

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning

Parallel MCTS with Batched Simulation

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning

Parallel MCTS with Batched Simulation

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning

Parallel MCTS with Batched Simulation

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning

Experiments

- Environment Setting
 - Simulator : Isaac Gym
 - Robot : UR5e with 2G-Gripper
 - Camera : Intel RealSense D455
 - Evaluator
 - Nvidia RTX 2080Ti GPU
 - Intel i7-9700K CPU
 - 32GB memory

Massive parallel planning in simulation and executing the best action on the real robot

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning

Experiments

- Environment Setting
 - Hyperparameter
 - Discount factor : $\gamma = 0.8$
 - Max depth : $d_T = 0.8$
 - Simulation depth : $d_s = 0.8$
 - Threshold of $GC : R_c^* = 0.8$
 - UCB exploration term : c = 0.3
 - Time limit (budget) : $T_{max} = 60 sec$
 - Number of robot (envs): 1000

Massive parallel planning in simulation and executing the best action on the real robot

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning

Results

• (6'01"~)

 Speed: 8×

 Speed: 8×

 GPU-based simulator

 Case: 13

 Real-world

 Observation

 Best action planned

 in simulator

Massive parallel planning in simulation and executing the best action on the real robot

Link : <u>https://www.youtube.com/watch?v=-Br2IBjArgY</u>

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning

Results

• PMBS vs. MCTS (with time-budge limited up to 60 sec)

	Num. of Actions	Time	Completion	Grasp Success
PMBS-60	5.72	73 s	100%	100%
MCTS-60	10.45	529s	83.3%	87.0%
PMBS-60 (sim)	5.03	81s	100%	97.2%
MCTS-60 (sim)	10.77	587s	76.7%	96.6%

- Number of Actions : PMBS < MCTS
- Time : PMBS < MCTS
- Completion : PMBS > MCTS
- Grasp Success : PMBS > MCTS

Summary

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning

Conclusion & Discussion

- **Propose PMBS** (Parallel Monte Carlo tree search with GPU-enabled batched simulations)
- Strengths
 - Accelerating long-horizon, episodic robotic planning task
 - Over 30x speed up compared to serial MTCS
 - Better solution quality compared to serial MTCS
 - Achieve near real-time planning performance in solving complex, long-horizon episodic tasks
- Weaknesses
 - Not enough to be real time evaluation
 - Evaluated for only 20 cases (environments) → not sure for random environment

Reference

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning

[1]

https://www.google.com/search?q=isaac+sim&sca_esv=576128351&tbm=isch&sxsrf=AM9HkKmNdzW7GkG4AnR6NBhC GpjpmuNQTw:1698160616992&source=lnms&sa=X&ved=2ahUKEwjGoOOi_Y6CAxXNhVYBHRTQCOgQ_AUoAXoECAMQ Aw&biw=1080&bih=1771&dpr=1#imgrc=nRQtBGSnUK-FGM

- [2] https://pypi.org/project/brax/
- [3] https://developer.nvidia.com/isaac-gym
- [4] https://dke.maastrichtuniversity.nl/m.winands/documents/multithreadedMCTS2.pdf

Thank You

Quiz

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning

Q1) What is not related to PMBS? (PMBS : Parallel Monte Carlo Tree Search)

- A. Selection
- **B. Batched Parallel Simulation**
- C. Batched Parallel Expansion
- D. Quick Sort

Q2) In this paper, which kind of parallel MCTS was used?

- A. Leaf Parallelization
- **B.** Root Parallelization
- C. Tree Parallelization with global mutexes
- D. Tree parallelization with local mutexes

