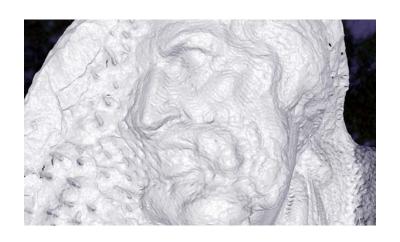
CS780: Motion Planning and Applications

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/MPA



About the Instructor

- Joined KAIST at 2007
- B.S., M.S. at Seoul National Univ.
- Ph.D. at Univ. of North Carolina-Chapel Hill
- Post. doc at Lawrence Livermore Nat'l Lab
- Main research focus
 - Handling of massive data for various computer graphics and geometric problems

My Recent Work

Welcome to CS780

Instructor: Sung-eui Yoon

Email: sungeui@gmail.com

Office: 3432 at CS building

Class time: 10:30am - 11:45am on T/Th

Class location: 4448 in the CS building

Office hours: 3:00-4:00, T/Th (or by appt.)

Course webpage:

http://sglab.kaist.ac.kr/~sungeui/MPA

No TAs

Real World Robots

round the oustage. A video carreia (3) samples mapper behilled goot

ASIMO

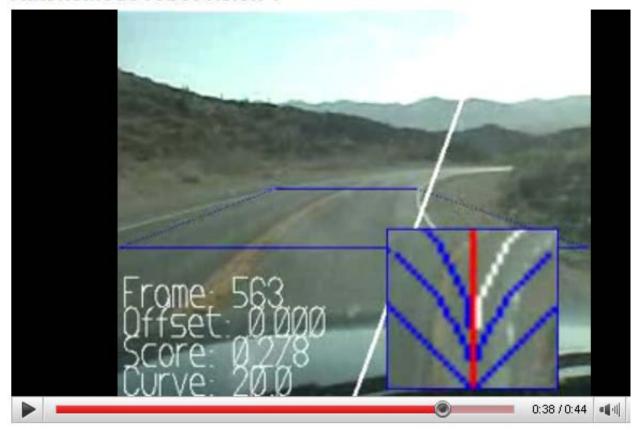
Da Vinci

Courtesy of Prof. Dinesh Manocha

Fantastic Human Robot at UAE Expo

Humanoid Robot:

http://youtube.com/watch?v=NYoY4p0_yal&mode=related&search


Albert HUBO Introduction - korea scienceworld

Humanoid Robot: http://www.youtube.com/watch?v=ZkYQWBXpk_0 =

Autonomous robot vision 1

Autonomous robot

http://www.youtube.com/watch?v=3SQiow-X3ko

Robot-Assisted Radical Prostatectomy

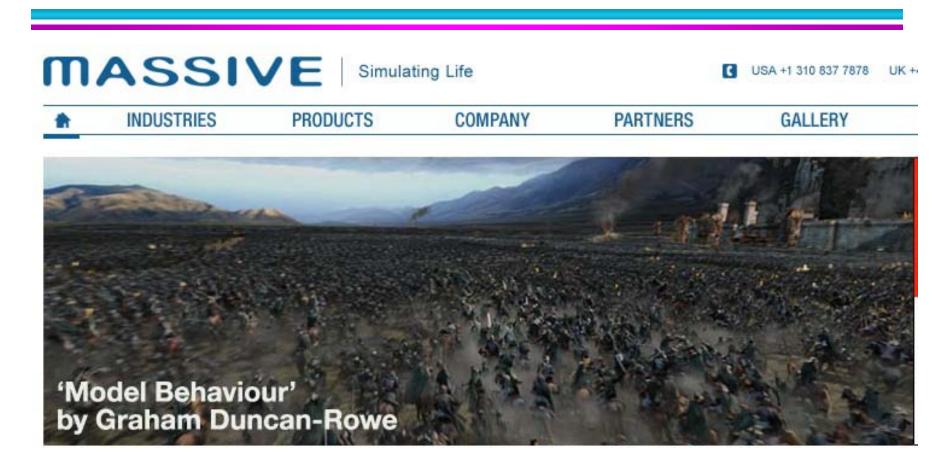
Medical robot:

http://www.youtube.com/watch?v=XfH8phFm2VY

Motion of Virtual Worlds

Motion of Virtual Worlds

Crowd simulation (biped) with Al implant video 1 of 2



Computer generated simulations:

http://www.youtube.com/watch?v=5-UQmVjFdqs

Motion of Virtual Worlds

Computer generated simulations, games, virtual prototyping: http://www.massivesoftware.com/

Smart Robots or Agents

- Autonomous agents that sense, plan, and act in real and/or virtual worlds
- Algorithms and systems for representing, capturing, planning, controlling, and rendering motions of physical objects

Applications:

- Manufacturing
- Mobile robots
- Computational biology
- Computer-assisted surgery
- Digital actors

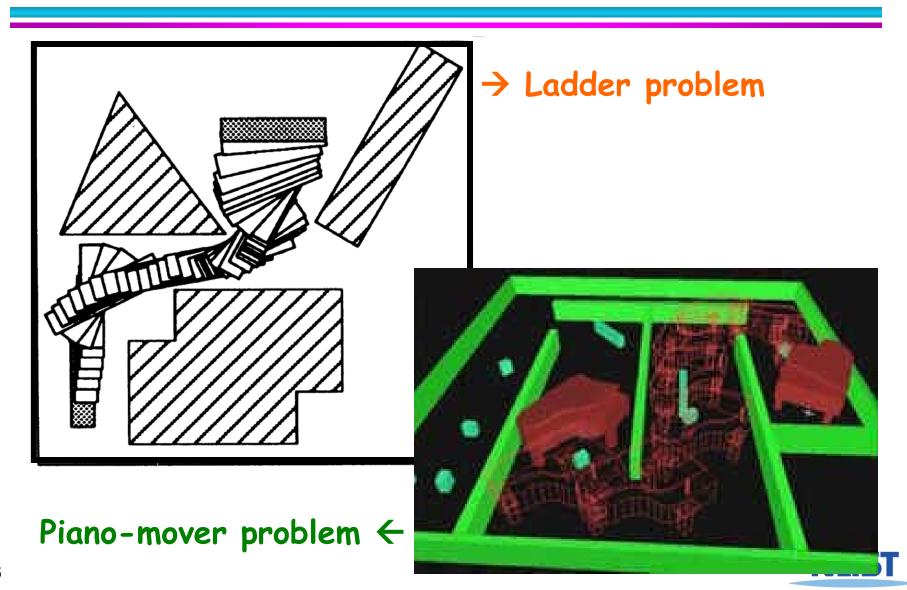
Goal of Motion Planning

- Compute motion strategies, e.g.:
 - Geometric paths
 - Time-parameterized trajectories
 - Sequence of sensor-based motion commands
 - Aesthetic constraints
- Achieve high-level goals, e.g.:
 - Go to A without colliding with obstacles
 - Assemble product P
 - Build map of environment E
 - Find object O

Basic Motion Planning Problem

• Statement:

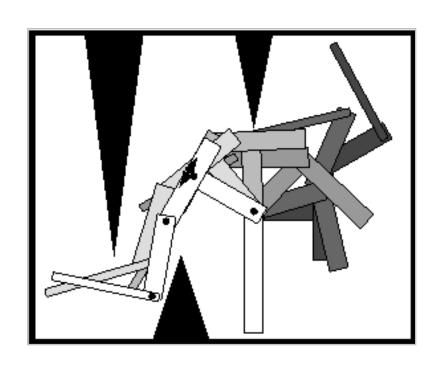
 Compute a collision-free path for an object (the robot) among obstacles subject to CONSTRAINTS

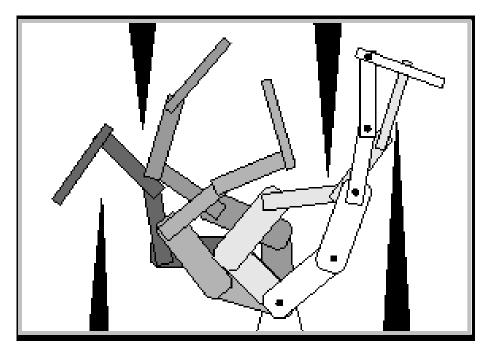

• Inputs:

- Geometry of robot and obstacles
- Kinematics of robot (degrees of freedom)
- Initial and goal robot configurations (placements)

• Outputs:

 Continuous sequence of collision-free robot configurations connecting the initial and goal configurations


Examples with Rigid Object



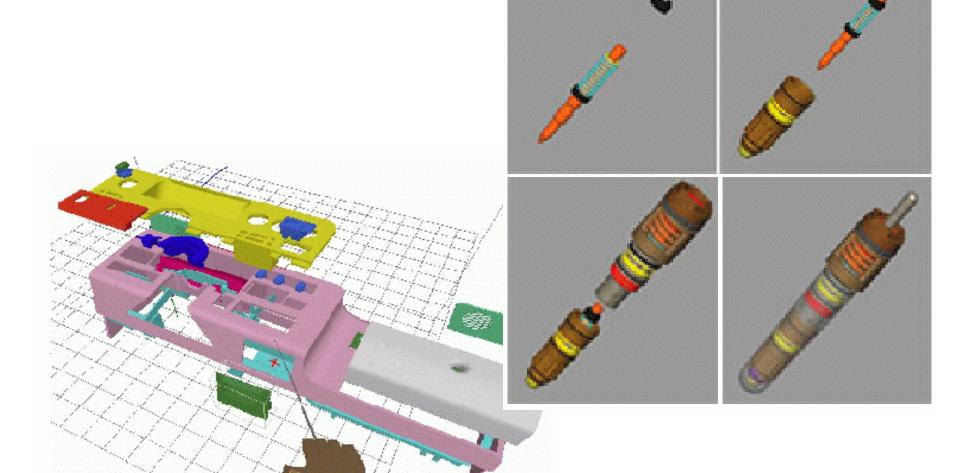
Is It Easy?

Example with Articulated Object

Some Extensions of Basic Problem

- Multiple robots
- Assembly planning
- Acquire information by sensing
 - Model building
 - Object finding/tracking
 - Inspection
- Nonholonomic constraints
- Dynamic constraints
- Stability constraints

- Optimal planning
- Uncertainty in model, control and sensing
- Exploiting task mechanics (sensorless motions, underactualted systems)
- Physical models and deformable objects
- Integration of planning and control
- Integration with higher-level planning

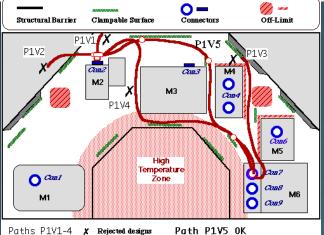

Examples of Applications

- Manufacturing:
 - Robot programming
 - Robot placement
 - Design of part feeders
- Design for manufacturing and servicing
- Design of pipe layouts and cable harnesses
- Autonomous mobile robots planetary exploration, surveillance, military scouting

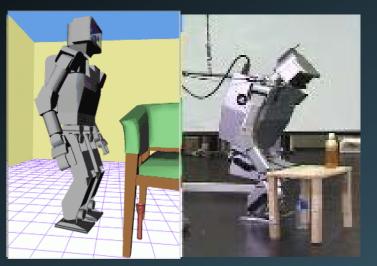
- Graphic animation of "digital actors" for video games, movies, and webpages
- Virtual walkthrough
- Medical surgery planning
- Generation of plausible molecule motions, e.g., docking and folding motions
- Building code verification

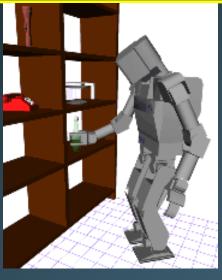


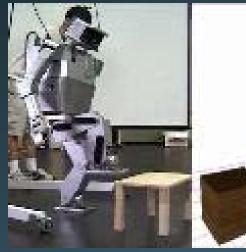
Assembly Planning and Design of Manufacturing Systems


Application: Checking Building Code

Cable Harness/ Pipe design







Humanoid Robot

[Kuffner and Inoue, 2000] (U. Tokyo)

Digital Actors

A Bug's Life (Pixar/Disney)

Toy Story (Pixar/Disney)

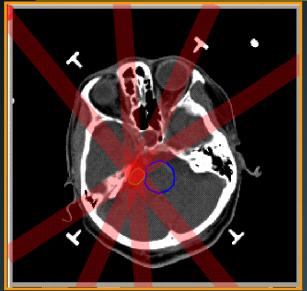
Tomb Raider 3 (Eidos Interactive)

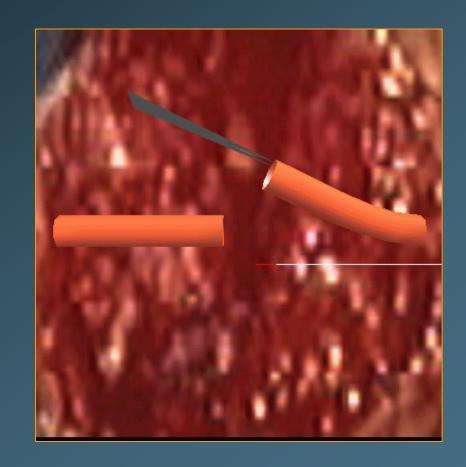
The Legend of Zelda (Nintendo)

Antz (Dreamworks)

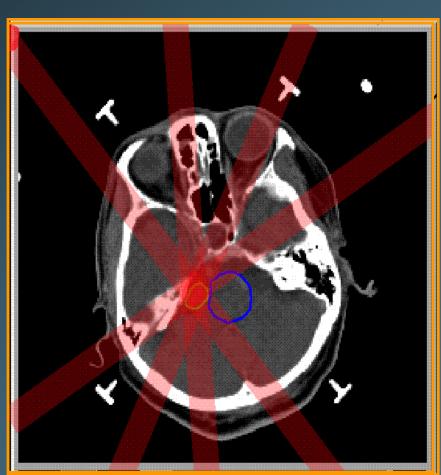
Final Fantasy VIII (SquareOne)

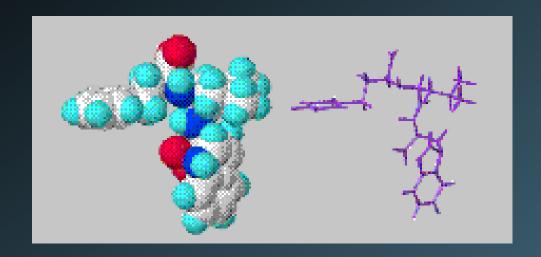
Motion Planning for Digital Actors

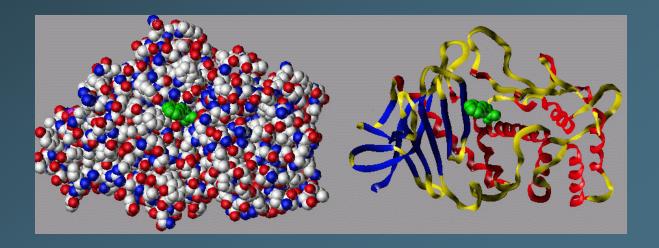

Manipulation


Sensory-based locomotion

Application: Computer-Assisted Surgical Planning




Radiosurgical Planning


Cyberknife

Study of the Motion of Bio-Molecules

- Protein folding
- Ligand binding

DARPA Grand Challenge

Planning for a collision-free 132 mile path in a desert

Prerequisites

- Basic knowledge of probability
 - E.g., events, expected values, etc
- Your willingness to read about new concepts and applications
- If you are not sure, please consult the instructor at the end of the course

Topics

- Underlying geometric concepts of motion planning
 - Configuration space
- Motion planning algorithms:
 - Complete motion planning
 - Randomized approaches
- Kinodynamic constraints
- Character motion in virtual environments
- Multi-agent and crowd simulation

The course is about motion planning algorithms, not control of real robots!

Course Overview

- 1/3 of lectures and 2/3 of student presentations
 - This is a research-oriented course
 - Paper reading list
- What you will do:
 - Choose papers that are interesting to you
 - You can bring your own research topic related to motion planning
 - Present talks explaining the papers
 - Propose idea and implement it as a final project
 - Quiz and mid-term
 - and, have fun!

Presentations and Final Project

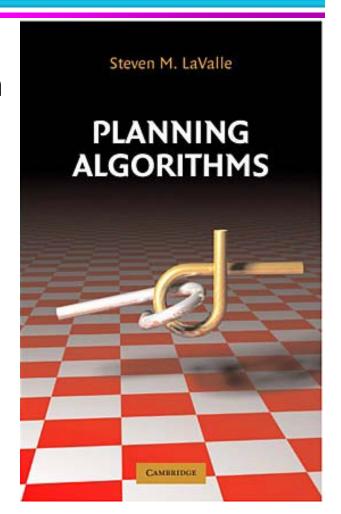
- For each paper:
 - Consider its main idea given its context
 - Look at pros and cons of each method
 - Think about how we can efficiently handle more realistic and complex scene
- Propose and implement ideas to address those problems
 - Prepare a final report

Review Service

 I'll give you comments on your reports and presentations

Course Awards

- Best speaker and best project
- For the best project, cost for attending the premium conf. (e.g., ICRA) will be supported
 - We may not select the best project if the project is not enough
- For the best presenter, a research equipment will be supported


Course Overview

- Grade policy
 - Class presentations: 30%
 - Quiz, assignment, and mid-term: 30%
 - Final project: 40%
 - Instructor (50%) and students (50%) will evaluate presentations and projects
- Late policy
 - No score
 - Submit your work before the deadline!
- Class attendance rule
 - Late two times → count as one absence
 - Every two absences → lower your grade (e.g.,
 A- → B+)

Resource

- Textbook
 - Planning Algorithms, Steven
 M. LaValle, 2006

(http://msl.cs.uiuc.edu/planning/)

Other Reference

- Our paper reading list
- Technical papers
 - IEEE International Conf. on Robotics and Automation (ICRA)
 - IEEE/RSJ Int. Conf. o nIntelligent Robots and Systems (IROS)
 - Graphics-related conference (SIGGRAPH, etc)
 - http://kesen.huang.googlepages.com/
- SIGGRAPH course notes and video encore
- Course homepages
- Google or Google scholar

Honor Code

- Collaboration encouraged, but assignments must be your own work
- Cite any other's work if you use their codes

Schedule

- Please refer the course homepage:
 - http://sglab.kaist.ac.kr/~sungeui/MPA

Official Language in Class

- English
 - I'll give lectures in English
 - I may explain again in Korean if materials are unclear to you
 - You are also required to use English, unless special cases

About You

- Name
- Your (non hanmail.net) email address
- What is your major?
- Previous experience on motion planning and robotics

Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today and submit at the beginning of the next class
 - 1
 - 2 for typical questions
 - 3 for questions with thoughts
 - 4 for questions that surprised me

Homework

Read Chapter 1 of our textbook

Optional:

 Motion planning: A journey of robots, molecules, digital Actors, and other artifacts.
 J.C. Latombe. Int. J. Robotics Research, 18(11):1119-1128, 1999.

Next Time...

- Configuration spaces
- Motion planning framework
- Classic motion planning approaches

