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Class Objectives

e Motion planning framework
e Classic motion planning approaches
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Configuration Space: |
Tool to Map a Robot to a Point
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Problem
Input

= Robot represented as a
point in the plane

= Obstacles represented as
polygons

= |nitial and goal positions

Output

A collision-free path
between the initial and

goal positions

Courtesy of Prof. David Hsu
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Problem

semi-free path
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Types of Path Constraints

" Local constraints:
lie in free space

* Differential constraints:
have bounded curvature

= Global constraints:
have minimal length
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Motion-Planning Framework

Continuous representation

(configuration space formulation)

Discretization

(random sampling, processing critical geometric events)

l

Graph searching
(blind, best-first, A*)

KAIST



Visibility graph method

Observation: If there is a a
collision-free path between two
points, then there is a polygonal
path that bends only at the
obstacles vertices.

Why?

Any collision-free path can be
transformed into a polygonal path
that bends only at the obstacle
vertices.

A polygonal path is a piecewise
linear curve.

----------
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Visibility Graph

e A visibility graph iIs a graph such that
e Nodes: s, g, or obstacle vertices
e Edges: An edge exists between nodes u and v if

the line segment between u and v is an
obstacle edges or it does not intersect the

obstacles
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Visibility Graph

A
oise
<A X hoe”
e A visibility graph
e Introduced In the late 60s

e Can produce shortest paths in 2-D
configuration spaces

KAIST
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iImple Algorithm

e Input: s, g, polygonal obstacles
e Output: visibility graph G

1

2
3
4:
5:
6
7
8
9

. for every pair of nodes u, v
If segment (u, v) iIs an obstacle then

Insert edge (u, v) into G;
else

for every obstacle edge e

If segment (u, v) intersects e
go to (1);

Insert edge (u, v) into G;

: Search a path with G using A*
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Computation Efficiency

1: for every pair of nodes u, v O(n?)
2: 1f segment (u, v) Is an obstacle then O(n)
3 Insert edge (u, v) into G;

4: else

5:  for every obstacle edge e O(n)
6 If segment (u, v) intersects e

7 go to (1);

8 Insert edge (u, v) into G;

e Simple algorithm: O(n3) time
e More efficient algorithms
e Rotational sweep O(n? log n) time, etc.

s ® O(Nn?) space KAIST
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Motion-Planning Framework

Continuous representation

(configuration space formulation)

Discretization

(random sampling, processing critical geometric events)

!

Graph searching
(blind, best-first, A*)
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Graph Search Algorithms

e Breadth, depth-first, best-first
e Dijkstra’s algorithm
o A*
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Breadth-first search




Breadth-first search




Breadth-first search




Breadth-first search
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Dijkstra’s Shortest Path
Algorithm

e Given a (non-negative) weighted graph,
two vertices, s and g:

e Find a path of minimum total weight between
them

e Also, find minimum paths to other vertices
e Has O (JV] IglV] + |E]D)
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Dijkstra’s Shortest Path
Algorithm

e AsetS

e Contains vertices whose final shortest-path cost has
been determined

e DIJKSTRA (G, s)

Initialize-Single-Source (G, s)

. S € empty

. Queue < Vertices of G

. While Queue is not empty

Do u < min-cost from Queue
S < union of S and {u}
for each vertex v in Adj [u]

do RELAX (u, v)

® NN WN R
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Dijkstra’s Shortest Path
Algorithm

(d) ”(e)
Black vertices are in the set.
White vertices are in the queue.
Shaded one is chosen for relaxation.
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A* Search Algorithm

e An extension of Dijkstra’s algorithm based
on a heuristic estimate

e Conservatively estimate the cost-to-go from a
vertex to the goal

e The estimate should not be greater than the
optimal cost-to-go

e Sort vertices based on “cost-to-come + the
estimated cost-to-go”

e Can find optimal solutions
with fewer steps

free space
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Best-First Search

¢ Pick a next node based on an estimate of
the optimal cost-to-go cost

e Greedily finds solutions that look good
e Solutions may not be optimal

e Can find solutions quite fast, but can be also
very slow

24 KAIST



Framework

continuous representation

!

discretization
consftruct visibility graph

|

graph searching
breadth-first search
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Computational Efficiency

e Running time O(n3)
e Compute the visibility graph
e Search the graph

e Space O(n?)

e Can we do better?
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Classic Path Planning
Approaches

e Roadmayp
e Represent the connectivity of the free space by
a network of 1-D curves
e Cell decomposition

e Decompose the free space into simple cells and
represent the connectivity of the free space by
the adjacency graph of these cells

e Potential field

e Define a function over the free space that has a
global minimum at the goal configuration and
follow its steepest descent

27 KAIST



Classic Path Planning
Approaches

e Roadmayp
e Represent the connectivity of the free space by
a network of 1-D curves
e Cell decomposition

e Decompose the free space into simple cells and
represent the connectivity of the free space by
the adjacency graph of these cells

e Potential field

e Define a function over the free space that has a
global minimum at the goal configuration and
follow its steepest descent
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Roadmap Methods

e Visibility Graph
e Shakey project, SRI
[Nilsson 69]
e Voronoli diagram

e Introduced by
computational
geometry researchers

e Generate paths that
maximize clearance

e O(nlog n) time and
O(n) space
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Other Roadmap Methods

e Visibility graph
e Voronoi diagram

e Silhouette

e First complete general method that applies to
spaces of any dimension and is singly
exponential in # of dimensions [Canny, 87]

e Probabilistic roadmaps

KAIST



Classic Path Planning
Approaches

e Roadmayp
e Represent the connectivity of the free space by
a network of 1-D curves
e Cell decomposition

e Decompose the free space into simple cells and
represent the connectivity of the free space by
the adjacency graph of these cells

e Potential field

e Define a function over the free space that has a
global minimum at the goal configuration and
follow its steepest descent
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Cell-Decomposition Methods

e Two classes of methods:
e Exact and approximate cell decompositions

e Exact cell decomposition

e The free space F is represented by a collection

of non-overlapping cells whose union is exactly
F

e Example: trapezoidal decomposition

KAIST
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Trapezoidal Decomposition
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Trapezoidal Decomposition
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Trapezoidal Decomposition

Adjacency graph

KAIST
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Trapezoidal Decomposition
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Trapezoidal Decomposition

;; critical events - criticality-based decomposition KAIST
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Trapezoidal Decomposition

11 T
I Planar sweep > O(n log n) time, O(n) space
| L I
11
1 1g 11 1
11 |
11 11
! !
| |
! |
4 1 T
11 I
11 T
X
T
R I
R I
R I

KAIST



39

Cell-Decomposition Methods

e Two classes of methods:
e Exact and approximate cell decompositions

e Approximate cell decomposition

e The free space F is represented by a collection
of non-overlapping cells whose union is
contained in F

e Cells usually have simple, regular shapes (e.g.,
rectangles and squares)

e Facilitates hierarchical space decomposition

KAIST



Quadtree decomposition




Octree decomposition
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Sketch of Algorithm

1. Decompose the free space F into cells

2. Search for a sequence of mixed or free
cells that connect that initial and goal
positions

3. Further decompose the mixed

4. Repeat 2 and 3 until a sequence of free
cells 1s found
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Classic Path Planning
Approaches

e Roadmayp
e Represent the connectivity of the free space by
a network of 1-D curves
e Cell decomposition

e Decompose the free space into simple cells and
represent the connectivity of the free space by
the adjacency graph of these cells

e Potential field

e Define a function over the free space that has a
global minimum at the goal configuration and
follow its steepest descent
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Potential Field Methods

e Initially proposed for real-time collision
avoidance [Khatib, 86]

e Hundreds of papers published on it

Goal

-~
.
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Potential Field

e A scalar function over the free space

e To navigate the robot applies a force
proportional to the negated gradient of the
potential field

e A navigation function is an ideal potential
field that

Has global minimum at the goal
Has no local minima

Grows to Infinity near obstacles
Is smooth

45 KAIST



Attractive and Repulsive fields

46
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L ocal Minima

¢ What can we do?

e Escape from local minima by taking random
walks

e Build an ideal potential field that does not have
local minima

KAIST



Sketch of Algorithm

e Place a regular grid G over the
configuration space

e Compute the potential field over G

e Search G using a best-first algorithm with
potential field as the heuristic function

48 KAIST
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Question

e Can such an ideal potential field be
constructed efficiently in general?
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Completeness

e A complete motion planner always returns
a solution when one exists and indicates
that no such solution exists otherwise

e Is the visibility algorithm complete? Yes

e How about the exact cell decomposition
algorithm and the potential field algorithm?

50 KAIST
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Class Objectives were:

e Motion planning framework
e Classic motion planning approaches
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Homework for Every Class

e Go over the next lecture slides

e Come up with one question on what we
have discussed today and submit at the
beginning of the next class

1

2 for typical questions

3 for questions with thoughts

4 for questions that surprised me

52 KAIST



Homework

e Install OOPSMP Motion Planning Library
e Create a scene and a robot

e Find a collision-free path and visualize the
path

B OO « = ume 5 Tuellizad & O

DOPM

_®  SketchUp File

Edit Veew Camera Draw Tools Window Help

P Toinas

Tabect bt R X Sabeet Lo N ey

et Ban (Rep Y

i ey 1

Srbecy ban

N Rep X
( Etane Chumery |

Query #4281 et ant Ry X Seieat Lo W hey

(Eiame ey )

| Qunry #5260 Sabect Start T heg | Swient Erd 1 ey

[ Ebrne Gy )

Duary #6[261) Sebpan Hraet 1 hey 1 il ing ey

[ Ewine sty | T

Defen fpraetaneg sl Laspiey o Caevectaed
bargén conmnpstiony 000, 40000
#ral conrmions S0000. $0000

= B b sobved [ubnd sodvr Bee = DBIERIT]
13 b saived [unad soben B = CLO282X0]
11 b soved [ubnd sadve nrve = 0 04T 162
5 i asived [unad sohe Bima = DDS 1908
vty § irandom irdes = 40 B sofved [ubnd seive Do = O 059588]
ATy 4 Irandom inden = 5 0 A0fved [ua st Bma = QLOFREH]
ety 1 e sadin = B B botved i sadve Brve = DLFRERSA]

ey

o Custras -7

i Bt -3

wsd PMrepeocens Teme = 80 175401



http://www.kavrakilab.org/OOPSMP/index.html�
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Conf. Deadline

e ICRA
e Sept. 15, 2010

e IROS
e Feb. 28, 2010

Welcome to IROS 201 Ow

I RO S 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
2 0 -I 0 laipei International Convention Center, Taipei, laiwan
October 18-22, 2010

take place in Taiwan

@IEEE Important Deadlines:

February 28, 2010 FProposals for Organized Sessions [ Proposals for Tutorials/Warkshops [/
Submission of full-length papers and vidsos

KAIST
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Next Time....

e Configuration spaces
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