Path Planning for Point Robots

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/MPA

Class Objectives

- Motion planning framework
- Classic motion planning approaches

Configuration Space: Tool to Map a Robot to a Point

Problem

Input

- Robot represented as a point in the plane
- Obstacles represented as polygons
- Initial and goal positions
- Output
 A collision-free path between the initial and goal positions

Problem

Problem

Types of Path Constraints

- Local constraints: lie in free space
- Differential constraints:
 have bounded curvature
- Global constraints: have minimal length

Motion-Planning Framework

Continuous representation

(configuration space formulation)

Discretization

(random sampling, processing critical geometric events)

Graph searching

(blind, best-first, A*)

Visibility graph method

- Observation: If there is a a collision-free path between two points, then there is a polygonal path that bends only at the obstacles vertices.
- Why? Any collision-free path can be transformed into a polygonal path that bends only at the obstacle vertices.

A polygonal path is a piecewise linear curve.

Visibility Graph

- A visibility graph is a graph such that
 - Nodes: s, g, or obstacle vertices
 - Edges: An edge exists between nodes u and v if the line segment between u and v is an obstacle edges or it does not intersect the obstacles

Visibility Graph

- A visibility graph
 - Introduced in the late 60s
 - Can produce shortest paths in 2-D configuration spaces

Simple Algorithm

- Input: s, q, polygonal obstacles
- Output: visibility graph G

```
1: for every pair of nodes u, v
    if segment (u, v) is an obstacle then
     insert edge (u, v) into G;
3:
4:
    else
  for every obstacle edge e
5:
      if segment (u, v) intersects e
6:
        go to (1);
7:
     insert edge (u, v) into G;
8:
9: Search a path with G using A*
```


Computation Efficiency

```
O(n^2)
1: for every pair of nodes u, v
    if segment (u, v) is an obstacle then
                                                  O(n)
     insert edge (u, v) into G;
3:
4:
    else
     for every obstacle edge e
5:
                                                  O(n)
       if segment (u, v) intersects e
6:
        go to (1);
7:
     insert edge (u, v) into G;
8:
```

- Simple algorithm: O(n³) time
- More efficient algorithms
 - Rotational sweep O(n² log n) time, etc.
- O(n²) space

Motion-Planning Framework

Continuous representation

(configuration space formulation)

Discretization

(random sampling, processing critical geometric events)

Graph searching

(blind, best-first, A*)

Graph Search Algorithms

- Breadth, depth-first, best-first
- Dijkstra's algorithm
- A*

Dijkstra's Shortest Path Algorithm

- Given a (non-negative) weighted graph, two vertices, s and g:
 - Find a path of minimum total weight between them
 - Also, find minimum paths to other vertices
 - Has O (|V| Ig|V| + |E|)

Dijkstra's Shortest Path Algorithm

A set S

 Contains vertices whose final shortest-path cost has been determined

DIJKSTRA (G, s)

- 1. Initialize-Single-Source (G, s)
- 2. S ← empty
- 3. Queue ← Vertices of G
- 4. While Queue is not empty
- 5. **Do** u ← min-cost from Queue
- 6. S \leftarrow union of S and $\{u\}$
- 7. **for** each vertex v in Adj [u]
- 8. **do** RELAX (u, v)

Dijkstra's Shortest Path Algorithm

Black vertices are in the set.

White vertices are in the queue.

Shaded one is chosen for relaxation.

A* Search Algorithm

- An extension of Dijkstra's algorithm based on a heuristic estimate
 - Conservatively estimate the cost-to-go from a vertex to the goal
 - The estimate should not be greater than the optimal cost-to-go
 - Sort vertices based on "cost-to-come + the estimated cost-to-go"

free space

Can find optimal solutions with fewer steps

Best-First Search

- Pick a next node based on an estimate of the optimal cost-to-go cost
 - Greedily finds solutions that look good
 - Solutions may not be optimal
 - Can find solutions quite fast, but can be also very slow

Framework

continuous representation

construct visibility graph

graph searching breadth-first search

Computational Efficiency

- Running time O(n³)
 - Compute the visibility graph
 - Search the graph
- Space O(n²)

• Can we do better?

Classic Path Planning Approaches

Roadmap

 Represent the connectivity of the free space by a network of 1-D curves

Cell decomposition

 Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells

Potential field

 Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Classic Path Planning Approaches

Roadmap

 Represent the connectivity of the free space by a network of 1-D curves

Cell decomposition

 Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells

Potential field

 Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Roadmap Methods

- Visibility Graph
 - Shakey project, SRI [Nilsson 69]
- Voronoi diagram
 - Introduced by computational geometry researchers
 - Generate paths that maximize clearance
 - O(n log n) time and O(n) space

Other Roadmap Methods

- Visibility graph
- Voronoi diagram
- Silhouette
 - First complete general method that applies to spaces of any dimension and is singly exponential in # of dimensions [Canny, 87]
- Probabilistic roadmaps

Classic Path Planning Approaches

Roadmap

 Represent the connectivity of the free space by a network of 1-D curves

Cell decomposition

 Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells

Potential field

 Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Cell-Decomposition Methods

- Two classes of methods:
 - Exact and approximate cell decompositions

- Exact cell decomposition
 - The free space F is represented by a collection of non-overlapping cells whose union is exactly F
 - Example: trapezoidal decomposition

Trapezoidal Decomposition

critical events -> criticality-based decomposition KAIST

Trapezoidal Decomposition

Cell-Decomposition Methods

- Two classes of methods:
 - Exact and approximate cell decompositions

- Approximate cell decomposition
 - The free space F is represented by a collection of non-overlapping cells whose union is contained in F
 - Cells usually have simple, regular shapes (e.g., rectangles and squares)
 - Facilitates hierarchical space decomposition

Quadtree decomposition

empty

mixed

full

Octree decomposition

Sketch of Algorithm

- 1. Decompose the free space F into cells
- 2. Search for a sequence of mixed or free cells that connect that initial and goal positions
- 3. Further decompose the mixed
- 4. Repeat 2 and 3 until a sequence of free cells is found

Classic Path Planning Approaches

Roadmap

 Represent the connectivity of the free space by a network of 1-D curves

Cell decomposition

 Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells

Potential field

 Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Potential Field Methods

 Initially proposed for real-time collision avoidance [Khatib, 86]

Hundreds of papers published on it

Robo'

Potential Field

- A scalar function over the free space
- To navigate the robot applies a force proportional to the negated gradient of the potential field
- A navigation function is an ideal potential field that
 - Has global minimum at the goal
 - Has no local minima
 - Grows to infinity near obstacles
 - Is smooth

Attractive and Repulsive fields

Local Minima

- What can we do?
 - Escape from local minima by taking random walks
 - Build an ideal potential field that does not have local minima

Sketch of Algorithm

- Place a regular grid G over the configuration space
- Compute the potential field over G
- Search G using a best-first algorithm with potential field as the heuristic function

Question

 Can such an ideal potential field be constructed efficiently in general?

Completeness

- A complete motion planner always returns a solution when one exists and indicates that no such solution exists otherwise
 - Is the visibility algorithm complete? Yes
 - How about the exact cell decomposition algorithm and the potential field algorithm?

Class Objectives were:

- Motion planning framework
- Classic motion planning approaches

Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today and submit at the beginning of the next class
 - 1
 - 2 for typical questions
 - 3 for questions with thoughts
 - 4 for questions that surprised me

Homework

- Install <u>OOPSMP Motion Planning Library</u>
- Create a scene and a robot

Find a collision-free path and visualize the

path

Conf. Deadline

- ICRA
 - Sept. 15, 2010
- IROS
 - Feb. 28, 2010

IROS 2010 take place in Taiwan

Welcome to IROS 2010

2010 IEEE/RSJ International Conference on Intelligent Robots and Systems

Taipei International Convention Center, Taipei, Taiwan

October 18-22, 2010

Important Deadlines:

February 28, 2010

Proposals for Organized Sessions / Proposals for Tutorials/Workshops / Submission of full-length papers and videos

Next Time....

Configuration spaces

