
C fi ti S IConfiguration Space I

Sung-Eui Yoon
(윤성의)(윤성의)

C URLCourse URL:
http://sglab.kaist.ac.kr/~sungeui/MPA



Class ObjectivesClass Objectives
Configuration space● Configuration space
● Definitions and examples
● Obstacles● Obstacles
● Paths
● Metrics● Metrics

2



What is a Path?What is a Path?
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Rough IdeaRough Idea
Convert rigid robots articulated robots etc● Convert rigid robots, articulated robots, etc. 
into points

● Apply algorithms for moving points● Apply algorithms for moving points
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Mapping from the Workspace to the 
Config ration SpaceConfiguration Space

workspace configuration space
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Configuration SpaceConfiguration Space
Definitions and examples●Definitions and examples

●Obstacles
● Paths
●Metrics
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Configuration Space (C space)Configuration Space (C-space)
Th fi ti f● The configuration of an 
object is a complete 
specification of the position

qqnn

specification of the position 
of every point on the object 
● Usually a configuration is q=(q1, q2,…,qn) qq33

expressed as a vector of 
position & orientation 
parameters: q = (q q q )

q (q1, q2, ,qn)

parameters: q  (q1, q2,…,qn)

● The configuration space C is
qq11● The configuration space C is 

the set of all possible 
configurations

qq22
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● A configuration is a point in C



Examples of Configuration 
SpacesSpaces
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Examples of Configuration 
SpacesSpaces

Workspace
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Workspace

This is not a valid C-space!



Examples of Configuration 
SpacesSpaces

The topology of C is usually not that 
f C t i Rof a Cartesian space Rn.
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Examples of Circular RobotExamples of Circular Robot
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Dimension of Configuration 
SpaceSpace

The dimension of the configuration space is● The dimension of the configuration space is 
the minimum number of parameters 
needed to specify the configuration of theneeded to specify the configuration of the 
object completely

● It is also called the number of degrees of 
freedom (dofs) of a moving objectg j
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Example: Rigid Robot in 2 D WorkspaceExample: Rigid Robot in 2-D Workspace

workspace

robot

workspace

f di tirobot

y


reference direction

reference point
y

● 3-parameter specification: q = (x y  ) with [0 2)

x

● 3 parameter specification: q  (x, y,  ) with [0, 2).
● 3-D configuration space
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E ample Rigid Robot in 2 D orkspaceExample: Rigid Robot in 2-D workspace

4 parameter specification: ( ) with● 4-parameter specification: q = (x, y, u, v) with 
u2+v2 = 1. Note u = cosand v  sin

● dim of configuration space = ???
Does the dimension of the configuration space

3  
● Does the dimension of the configuration space 

(number of dofs) depend on the 
parametrization?p
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E ample Rigid Robot in 2 D orkspaceExample: Rigid Robot in 2-D workspace

4 parameter specification: ( ) with● 4-parameter specification: q = (x, y, u, v) with 
u2+v2 = 1. Note u = cosand v  sin

● dim of configuration space = ???
Does the dimension of the configuration space

3  
● Does the dimension of the configuration space 

(number of dofs) depend on the 
parametrization?p

● Topology: a 3-D cylinder C = R2 x S1

x

● Does the topology depend on the

x
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● Does the topology depend on the 
parametrization?



Holonomic and Non-Holonomic 
ContraintsContraints

Holonomic constraints●Holonomic constraints
● g (q, t) = 0

●Non-holonomic constraints
( ’ t) 0● g (q, q’, t) = 0
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Computation of Dimension of C-
SpaceSpace

Suppose that we have a rigid body that can● Suppose that we have a rigid body that can 
translate and rotate in 2D workspace
● Start with three points: A B C (6D space)● Start with three points: A, B, C (6D space)

●We have the following (holonomic)●We have the following (holonomic) 
constraints
● Given A, we know the dist to B: d(A,B) = |A-B|, ( , ) | |
● Given A and B, we have similar equations:

d(A,C) = |A-C|, d(B,C) = |B-C|

● Each holonomic constraint reduces one 
di
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dim.
● Not for non-holonomic constraint



Example: Rigid Robot in 3-D 
WorkspaceWorkspace

We can represent the positions and●We can represent the positions and 
orientations of such robots with matrices 
(i.e., SO (3) and SE (3))(i.e., SO (3) and SE (3))
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SO (n) and SE (n)SO (n) and SE (n)
S i l th l SO( ) f t i● Special orthogonal group, SO(n), of n x n matrices 
R,





 131211 rrr that satisfy: 


















333231

232221

131211

rrr
rrr
rrr

R

y
r1i

2 + r2i
2 + r3i

2 = 1 for all i ,
r1i r1j + r2i r2j + r3i r3j = 0 for all i ≠ j,
d t(R) 1 333231 rrr det(R) = +1

Refer to the 3D Transformation at the undergraduate computer graphics.

● Given the orientation matrix R of SO (n) and the 
position vector p, special Euclidean group, SE (n), 
is defined as:is defined as:





 pR
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



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Example: Rigid Robot in 3-D 
WorkspaceWorkspace
● q = (position, orientation) = (x, y, z, ???)● q  (position, orientation)  (x, y, z, ???)

● Parametrization of orientations by matrix: y
q = (r11, r12 ,…, r33, r33) where r11, r12 ,…, r33 are the 
elements of rotation matrix


)3(232221

131211

SOrrr
rrr

R 












333231 rrr 




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Example: Rigid Robot in 3-D 
WorkspaceWorkspace
● Parametrization of orientations by Euler angles:● Parametrization of orientations by Euler angles: 


zz
z

zz zz



zz


1  2  3  4

y






yy
y


yy

xx
xx

yy

x
xx
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Example: Rigid Robot in 3-D 
WorkspaceWorkspace

Parametrization of orientations = ( )● Parametrization of orientations 
by unit quaternion: u = (u1, u2, u3, u4) 
with u1

2 + u2
2 + u3

2 + u4
2 = 1.

n = (nx, ny, nz)

with u1 u2 u3  u4  1.
● Note (u1, u2, u3, u4) = 

(cos/2, nxsin/2, nysin/2, nzsin/2) with 


y
nx

2 + ny
2+ nz

2 = 1

C ith t ti f● Compare with representation of 
orientation in 2-D:
(u1,u2) = (cossin)(u1,u2)  (cossin)
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Example: Rigid Robot in 3-D 
WorkspaceWorkspace

Advantage of unit quaternion● Advantage of unit quaternion 
representation
● Compact● Compact
● No singularity
● Naturally reflect the topology of the space ofNaturally reflect the topology of the space of 

orientations

●Number of dofs = 6
● Topology: R3 x SO(3)p gy ( )
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Example: Articulated RobotExample: Articulated Robot
● q = (q1 q2 q2 )● q  (q1,q2,…,q2n)
● Number of dofs = 2n
● What is the topology?● What is the topology?

qq22

qq11

An articulated object is a set of 
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rigid bodies connected at the 
joints.



Class Objectives were:Class Objectives were:
Configuration space● Configuration space
● Definitions and examples
● Obstacles● Obstacles
● Paths
● Metrics● Metrics

25



Additional HomeworkAdditional Homework
For the first class in every week:● For the first class in every week:
● Find two papers at ICRA/IROS
● Go over abstracts and browse papers● Go over abstracts and browse papers
● Submit a short summary (just a few 

paragraphs) for each paperparagraphs)  for each paper
● Do not copy paper’s abstract for your 

homework

26



Next TimeNext Time….
Configuration space● Configuration space
● Definitions and examples
● Obstacles● Obstacles
● Paths
● Metrics● Metrics
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