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Obstacles in the Config ration SpaceObstacles in the Configuration Space

A configuration is collision free or free if● A configuration q is collision-free, or free, if 
a moving object placed at q does not 
intersect any obstacles in the workspaceintersect any obstacles in the workspace

● The free space F is the set of free● The free space F is the set of free 
configurations

● A configuration space obstacle (C-obstacle) 
is the set of configurations where theis the set of configurations where the 
moving object collides with workspace 
obstacles
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Disc in 2 D WorkspaceDisc in 2-D Workspace
workspace configuration 

space
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Polygonal Robot Translating in 2-D 
WorkspaceWorkspace

workspace configuration workspace
space

6



Polygonal Robot Translating & Rotating 
in 2 D Workspacein 2-D Workspace

workspace configuration workspace
space
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Polygonal Robot Translating & Rotating 
in 2 D Workspacein 2-D Workspace
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Articulated Robot in 2-D 
WorkspaceWorkspace

workspace configuration space
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C Obstacle ConstructionC-Obstacle Construction
Input:● Input:
● Polygonal moving object translating in 2-D 

workspaceworkspace 
● Polygonal obstacles

●Output: configuration space obstacles●Output: configuration space obstacles 
represented as polygons
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Minkowski SumMinkowski Sum
The Minkowski sum of two sets P and Q● The Minkowski sum of two sets P and Q, 
denoted by PQ, is defined as

P+Q = { p+q | p P, qQ }P Q  { p q | p P, qQ }

p

q

● Similarly, the Minkowski difference is 
defined as

p

defined as
P – Q = { p–q | pP, qQ }

= P + Q= P + -Q
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Minkowski Sum of Convex 
polygonspolygons

The Minkowski sum of two convex● The Minkowski sum of two convex 
polygons P and Q of m and n vertices 
respectively is a convex polygon P + Q of mrespectively is a convex polygon P  Q of m 
+ n vertices.
● The vertices of P + Q are the “sums” of vertices 

of P and Q.
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ObservationObservation
If P is an obstacle in the workspace and M● If P is an obstacle in the workspace and M
is a moving object. Then the C-space 
obstacle corresponding to P is P – Mobstacle corresponding to P is P M.

M

P

O
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Computing C obstaclesComputing C-obstacles
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Computational efficiencyComputational efficiency
●Running time O(n+m)●Running time O(n+m) 
● Space O(n+m) 
●Non-convex obstacles

● Decompose into convex polygons (e.g., 
triangles or trapezoids) compute thetriangles or trapezoids), compute the 
Minkowski sums, and take the union

● Complexity of Minkowksi sum O(n2m2)● Complexity of Minkowksi sum O(n m ) 

● 3-D workspace● 3-D workspace
● Convex case: O(nm) 
● Non-convex case: O(n3m3)
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● Non convex case: O(n m ) 



Worst case exampleWorst case example
●O(n2m2) complexity●O(n2m2) complexity

2D example
Agarwal et al. 02
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444 tris 1 134 tris
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444 tris 1,134 tris



Union of
66 667 primitives66,667 primitives
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Paths in the configuration spacePaths in the configuration space
workspace configuration space

● A path in C is a continuous curve connecting two 
configurations q and q’ :configurations q and q :

Css  )(]1,0[: 
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such that q and q’.



Constraints on pathsConstraints on paths 
● A trajectory is a path parameterized by time:● A trajectory is a path parameterized by time:

CtTt  )(],0[: 

● Constraints
● Finite lengthe e g
● Bounded curvature
● Smoothness
● Minimum length
● Minimum time
● Minimum energy
● …
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Free Space TopologyFree Space Topology

A f th li ti l i th f F● A free path lies entirely in the free space F.
● The moving object and the obstacles are 

d l d l d b i hmodeled as closed subsets, meaning that 
they contain their boundaries.

●One can show that the C-obstacles are 
closed subsets of the configuration space C 

llas well.
● Consequently, the free space F is an open 

b t fsubset of C. 
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Semi Free SpaceSemi-Free Space
A configuration is semi free if the moving● A configuration q is semi-free if the moving 
object placed q touches the boundary, but 
not the interior of obstacles.not the interior of obstacles.
● Free, or
● In contact

● The semi-free space is a closed subset of C. 
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ExampleExample
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ExampleExample

25



Homotopic Paths
● Two paths and ’ (that map from U to V) with the same

Homotopic Paths
● Two paths and   (that map from U to V) with the same 

endpoints are homotopic if one can be continuously 
deformed into the other:

with h(s,0) = (s) and h(s,1) = ’(s).

VUh  ]1,0[:

with h(s,0)  (s) and h(s,1)   (s).

● A homotopic class of paths● A homotopic class of paths
contains all paths that are
homotopic to one another.p
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Connectedness of C SpaceConnectedness of C-Space
C is connected if every two configurations● C is connected if every two configurations 
can be connected by a path.

● C is simply-connected if any two paths 
connecting the same endpoints areconnecting the same endpoints are 
homotopic.
Examples: R2 or R3

●Otherwise C is multiply-connected.Otherwise C is multiply connected.
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Connectedness of C SpaceConnectedness of C-Space
C is connected if every two configurations● C is connected if every two configurations 
can be connected by a path.

● C is simply-connected if any two paths 
connecting the same endpoints areconnecting the same endpoints are 
homotopic.
Examples: R2 or R3

●Otherwise C is multiply-connected.Otherwise C is multiply connected.
Examples: S1 and SO(3) are multiply- connected:
● In S1, infinite number of homotopy classes
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● In SO(3), only two homotopy classes



Configuration spaceConfiguration space
Definitions and examples●Definitions and examples

●Obstacles
● Paths
●Metrics
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Metric in Configuration SpaceMetric in Configuration Space
● A metric or distance function d in a● A metric or distance function d in a 

configuration space C is a function  

h h
0)',()',(: 2  qqdCqqd

such that
● d(q, q’) = 0 if and only if q = q’,

d( ’) d( ’ )

),(),( qqqq

● d(q, q’) = d(q’, q),
● .)',"()",()',( qqdqqdqqd 
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ExampleExample
Robot A and a point on A●Robot A and a point x on A

● x(q): position of x in the workspace when A
is at configuration qis at configuration q

● A distance d in C is defined by
d(q q’) = max || x(q)  x(q’) ||d(q, q ) = maxxA || x(q)  x(q ) ||

, where ||x - y|| denotes the Euclidean 
di b i d i hdistance between points x and y in the 
workspace.
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L MetricsLp Metrics
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● L2: Euclidean metric
● L1: Manhattan metric● L1: Manhattan metric
● L∞: Max (| xi – xi |)′
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Examples in R2 x S1Examples in R2 x S1

C id R2 S1● Consider R2 x S1

● q = (x, y,), q’ = (x’, y’, ’) with , ’  [0,2)
●  = min { | ’ | 2 | ’| } ●  = min { |  ’ | , 2- |  | } 



● d(q, q’) = sqrt( (x-x’)2 + (y-y’)2 + 2 ) )
’’

(q q ) q ( ( ) (y y ) ) )
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Class Objectives were:Class Objectives were:
Configuration space● Configuration space
● Definitions and examples
● Obstacles● Obstacles
● Paths
● Metrics● Metrics
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Next TimeNext Time….
Collision detection and distance● Collision detection and distance 
computation
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