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e Configuration space
e Definitions and examples
e Obstacles
e Paths
e Metrics
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e Definitions and examples
e Obstacles

e Paths

e Metrics

KAIST



Obstacies in the Configuration Space

e A configuration g is collision-free, or free, If
a moving object placed at g does not
Intersect any obstacles in the workspace

e The free space F Is the set of free
configurations

e A configuration space obstacle (C-obstacle)
IS the set of configurations where the
moving object collides with workspace
obstacles
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Polygonal Robot Translating in 2-D
Workspace

configuration

workspace
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Polygonal Robot Translating & Rotating
in 2-D Workspace

workspace configuration
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Polygonal Robot Translating & Rotating
in 2-D Workspace
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Articulated Robot in 2-D
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e Input:

e Polygonal moving object translating in 2-D
workspace

e Polygonal obstacles

e Output: configuration space obstacles
represented as polygons
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e The Minkowski sum of two sets P and Q,
denoted by P®Q, Is defined as

P#Q={p+q|p eP,qeQ} //q
P

e Similarly, the Minkowski difference is
defined as

PeQ={p-q|peP,qeQ}
= P& -Q
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Minkowski Sum of Convex

I‘A \ W VWV _9N2¥Ya

poiygons

e The Minkowski sum of two convex
polygons P and Q of m and n vertices
respectively is a convex polygon P& Q of m
+ n vertices.

e The vertices of P® Q are the “sums” of vertices
of P and Q.
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e If P Is an obstacle in the workspace and M
IS a moving object. Then the C-space
obstacle corresponding to P iIs Pe M

13 KAIST



KAIST

14



15

ﬂA [ " Y ‘A
vomputa

e Running time O(n+m)
e Space O(n+m)

e Non-convex obstacles

e Decompose into convex polygons (e.q.,
triangles or trapezoids), compute the
Minkowski sums, and take the union

e Complexity of Minkowksi sum O(n?m?)

e 3-D workspace
e Convex case: O(nhm)
e Non-convex case: O(n®m3)
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e O(n’Mm?) complexity

2D example
Agarwal et al. 02
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Union of
66,667 primitives
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e Definitions and examples
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e A path in C is a continuous curve connecting two
configurations g and q’:

7:5€[01] > 7(s)eC

such that #0)=qand «(1)=q’.
KAIST
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e A trajectory iIs a path parameterized by time:
7:t€[0,T]>7r(t)eC

e Constraints
e Finite length
e Bounded curvature
e Smoothness
e Minimum length
e Minimum time
e Minimum energy
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Space Topology

e A free path lies entirely in the free space F.

e The moving object and the obstacles are
modeled as closed subsets, meaning that
they contain their boundaries.

e One can show that the C-obstacles are
closed subsets of the configuration space C

as well.

e Consequently, the free space F Is an open
subset of C.
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e A configuration g is semi-free iIf the moving
object placed g touches the boundary, but
not the interior of obstacles.

e Free, or
e In contact

e The semi-free space Is a closed subset of C.
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e Two paths t and t’ (that map from U to V) with the same
endpoints are homotopic if one can be continuously
deformed into the other:

h:U x[01] >V
with h(s,0) = t(s) and h(s,1) = 7°(s).
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contains all paths that are

homotopic to one another.
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e C Is connected If every two configurations
can be connected by a path.

e C Is simply-connected if any two paths
connecting the same endpoints are
homotopic.

Examples: R?or R3

e Otherwise C i1s multiply-connected.
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e C Is connected If every two configurations
can be connected by a path.

e C Is simply-connected if any two paths
connecting the same endpoints are
homotopic.

Examples: R?or R3

e Otherwise C Is multiply-connected.
Examples: St and SO(3) are multiply- connected:

e In S!, infinite number of homotopy classes

e In SO(3), only two homotopy classes
KAIST



29

Cng ation spac
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e A metric or distance functiond in a
configuration space C iIs a function

d:(0,0)eC?*—>d(g,g)=>0
such that (9.9) (9.9)

e d(g,g)=0i1fandonly ifg=q’,
e d(q,q’) =d(q’, 9),
e d(g,9')<d(q,9")+d(q",q’).
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e Robot A and a point x on A

e X(q): position of x in the workspace when A
IS at configuration g

e A distance d in C is defined by
d(@, 9°) = max,a || x(@) —x(a’) |

, where | |x-y] | denotes the Euclidean
distance between points x and y in the
workspace.
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e L,: Euclidean metric
e L.: Manhattan metric
L. Max (| x;—x|)
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e Consider R2 x St
e g=(X,v,0,0 =(x",y’, &) with 6, & € [0,2n)
ea=mn{]|60-],2n-]16-0"] }

e d(g, q7) = sqrt( (x-x") + (y-y")> + a? ) )
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e Configuration space
e Definitions and examples
e Obstacles
e Paths
e Metrics
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e Collision detection and distance
computation
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