Proximity Queries
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Course URL.:
http://sglab.kaist.ac.kr/~sungeui/MPA
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e Understand collision detection and distance
computation

e Bounding volume hierarchies
e Tracking features
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Two geometric primitives in configuration

e CLEAR(Q)
Is configuration q collision
free or not?

goal

e LINK(g, q)
Is the straight-line path
between  and q’
collision-free?

qim't
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e Input: two objects A and B

e Output:

e Distance computation: compute the distance
(in the workspace) between A and B

OR

e Collision detection: determine whether A and B
collide or not
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Collision detection vs. distance
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e The distance between
two objects (in the
workspace) is the
distance between the
two closest points on
the respective objects

e Collision if and only if
distance =0
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Collision detection does not allow us to
check for free path rigorously
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Collision detection does not allow us to
check for free path rigorously
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Use distance to check for free path
rigorously
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Use distance to check for free path
rigorously

Link(qO, qgl)
1T g0eN(gql) or gleN(qO)
- then
return TRUE.
: else
q’ = (gO0+gl)/2.
1T g° 1s 1In collision
then
return FALSE
else
10: return Link(q0, g’) && Link({ql,q”) kaIST
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e Robotics
e Collision avoidance

e Path planning
e Graphics & virtual environment simulation

e Haptics
e Collision detection
e Force proportional to distance
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e Discrete collision detection
e Continuous collision detection
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Discrete collision detection (DCD)

From Duksu’s slides
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Discrete VS Continuous

Discrete collision detection (DCD)

Time step (i-1) Time step (1)
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Discrete VS Continuous

Continuous collision detection(CCD)

Time step (i-1) Time step (1)
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Continuous CD

Discrete CD

Accuracy

Accurate

May miss some collisions

Computation time

Slow

Fast
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e Discrete collision detection
e Continuous collision detection

e These are typically accelerated by bounding
volume hierarchices (BVHS)
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e Sphere [Whitted30]

e Cheap to compute
e Cheap test
e Potentially very bad fit

e Axis-aligned bounding box
e Very cheap to compute
e Cheap test
e Tighter than sphere

KAIST
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e Oriented bounding box
e Fairly cheap to compute
e Fairly cheap test
e Generally fairly tight

e Slabs /7 K-dops

e More expensive
to compute

e Fairly cheap test \

e Can be tighter than OBB \

KAIST
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Boundlng Volume Hierarchies
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e Organize bounding volumes recursively as
a tree

e Construct BVHs in a top-down manner

e Use median-based partitioning or other
advanced partitioning methods

A e
A BVH
KAIST



[ BV overlap test (A,X) ]

L (Ax)
BV overlap test

(BY), (B,Z), (CY), (C.Z)

| ®Y)
Primitive collision test
(1,5), (1,6), (2,5), (2,6)

Triangle 1 and 5 have a collision! v
(1,5)

From Duksu’s slides
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e Traverse BVHs with depth-first or breadth-

first

e Refine a BV node first that has a bigger BV
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e BVHs are also widely used

e Models a continuous motion for a primitive,
whose positions are defined at discrete
time steps

e E.g., linear interpolation
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Computing distances

e Depth-first search on the binary tree
e Keep an updated minimum distance
e Depth-first - more pruning in search

e Prune search on branches that won’t
reduce minimum distance

e Once leaf node Is reached, examine
underlying convex polygon for exact

distance

23 KAIST



24

u
1 Vv \ VA 2l aa

DIHTTPIC TAAITIPYIC

e Set Initial distance value to Infinity

Start at the root node.
20 < infinity, so continue
searching

KAIST



n
1 Vv \ VA 2l aa

DIHTTPIC TAAITIPYIC

e Set Initial distance value to Infinity

d = 20
Start at the root node. 40 < infinity, so continue
20 < infinity, so continue searching recursively.
searching.

e Choose the nearest of the two child

N spheres to search first KAIST
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e Eventually reach a leaf node

Q;d;‘lﬂ

40 < infinity; examine the
polygon to which the leaf
node is attached.
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e Eventually reach a leaf node

3 VA

/
/
40 < infinity; examine the Call algorithm to find exact
polygon to which the leaf distance to the polygon.
node Is attached. Replace infinity with new
minimum distance (42 in this
case).
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e Continue depth-first search

45 > 42; don’'t search this
branch any further

KAIST
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e Continue depth-first search

45 > 42; don'’t search this 60 > 42; we can prune this
branch any further half of our tree from the
search

29 KAIST
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e Roughly balanced binary tree

e Expected time O(n log n)

e Time to generate node v is proportional to the
number of leaf nodes descended from v.

e Tree iIs built only once and can often be
pre-computed.
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e Full search
e O(n) time to traverse the tree, where n = number
of leaf nodes

e Plus time to compute distance to each polygon
INn the underlying model

e The algorithm allows a pruned search:

e \Worst case as above; occurs when objects are
close together

e Best case: O(log n) + a single polygon
calculation

e Average case ranges between the two.

KAIST



32

r\f\lf'\f\lf‘
JICI1ICI

f\l oY aYaWNa
adal LAdoT

e If second object is not a single point, then
search & compare 2 trees

e Use two BVHs and perform the BVH traversal
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e When updating the minimum distance d’
between objects, set ('=(1-a)d (d = actual
distance).

® a is our relative error, why?

e Guarantee that objects are at least d” apart

d_>d=d_>(@1-a)d=(d-d_)/d<a

min
¢ (1-a)d = 0iff d = 0; correctly detects collisions
e Improves performance by pruning search
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e Tested on a set of six 3D chess pieces
e Non-convex
e Each piece has roughly 2,000 triangles
e Each piece has roughly 5750 leaf nodes

e Relative error of 202 - more pruning in
search - speedup of 2 orders of magnitude

e Objects close together - less pruning in
search - less efficient

KAIST
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o V-Clip: Fast and Robust Polyhedral Collision

Detection, B. Mirtich, 1997
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e Work for convex objects in 2-D or 3-D
environements

e Compute the exact distance
e Efficiency from motion coherence
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e For convex objects, an iterative step
always results Iin a decrease In the
candidate “feature” pair.
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Features and their Voronoi
regions

e Features
e Vertices
e Edges
e For a feature X in a convex polygon, the
Voronoli region vor(X) iIs the set of points

outside of the polygon that are as close to X
as to any other feature on the polygon.
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Voronoi regions of points and
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e VVoronol region of a
point

e VVoronol region of an
edge
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e Theorem: Let Xand Y be a pair of features
from disjoint convex polygons and let xe X
and ye Y be the closest pair of points
between X and Y. If xe vor(Y) and ye vor(X)
then x and y are a globally closest pair of
points between the polygons.

41 KAIST



KAIST

42



KAIST

43



I~ +h nn

1,

Sketch of the algorithm
1: Start with a candidate feature pair
(X,Y).
2. 1T (X,Y) satisfies the critical condition
3: then
return (X,Y) as the closest pair.
4: else

Update either X or Y to 1ts neighboring
feature. Go to (2).

44 KAIST
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e More features
e Vertices
e Edges
e Faces

e More cases for the critical conditions
Vertex-vertex

Vertex-edge

Vertex-face

Edge-edge

Edge-face

KAIST
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e Understand collision detection and distance
computation

e Bounding volume hierarchies
e Tracking features
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e Probabilistic Roadmaps
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