Proximity Queries

Sung-Eul Yoon

(S A O]
\ s)

Course URL.:
http://sglab.kaist.ac.kr/~sungeui/MPA

KAIST

f'\ \l

Clac : o
Cias bjectives

e Understand collision detection and distance
computation

e Bounding volume hierarchies
e Tracking features

KAIST

Two geometric primitives in configuration

e CLEAR(Q)
Is configuration q collision
free or not?

goal

e LINK(g, q)
Is the straight-line path
between and q’
collision-free?

qim't

KAIST

DrahhlAarm
r1TUJICIII

e Input: two objects A and B

e Output:

e Distance computation: compute the distance
(in the workspace) between A and B

OR

e Collision detection: determine whether A and B
collide or not

KAIST

Collision detection vs. distance

AArmnmiitatiAnn
bUIIlIJUlal.IUII

e The distance between
two objects (in the
workspace) is the
distance between the
two closest points on
the respective objects

e Collision if and only if
distance =0

KAIST

Collision detection does not allow us to
check for free path rigorously

KAIST

Collision detection does not allow us to
check for free path rigorously

KAIST

Use distance to check for free path
rigorously

KAIST

Use distance to check for free path
rigorously

Link(qO, qgl)
1T g0eN(gql) or gleN(qO)
- then
return TRUE.
: else
q’ = (gO0+gl)/2.
1T g° 1s 1In collision
then
return FALSE
else
10: return Link(q0, g’) && Link({ql,q”) kaIST

© 0 N O O & W DN P

10

Annlie

APPIHL

CD

En

e Robotics
e Collision avoidance

e Path planning
e Graphics & virtual environment simulation

e Haptics
e Collision detection
e Force proportional to distance

KAIST

11

| e | e

Alliar~ MNAtAa~nti
WUINTTOIUIT LT ULVl

e Discrete collision detection
e Continuous collision detection

KAIST

12

m
LJ

S

C

Time step (i-1)

v
|

e

+
L

€

\/ = Ediall

C MNnA + ~
Vo LUINHITULTITUD

S

Discrete collision detection (DCD)

From Duksu’s slides

KAIST

h:hf\lﬁf\ f\\lo hhh :nllf\llf\
Discrete VS Continuous

Discrete collision detection (DCD)

Time step (i-1) Time step (1)

13 KAIST

h:hf\lﬁf\ f\\lo hhh :nllf\llf\
Discrete VS Continuous

Continuous collision detection(CCD)

Time step (i-1) Time step (1)

14 KAIST

15

o
n
O
-5
D
~—
D
<

p

)
)

@)
O
—
O

)

Continuous CD

Discrete CD

Accuracy

Accurate

May miss some collisions

Computation time

Slow

Fast

KAIST

16

| e ["

Alliar~ MNAtAa~nti
WUINTTOIUIT LT ULVl

e Discrete collision detection
e Continuous collision detection

e These are typically accelerated by bounding
volume hierarchices (BVHS)

KAIST

17

e Sphere [Whitted30]

e Cheap to compute
e Cheap test
e Potentially very bad fit

e Axis-aligned bounding box
e Very cheap to compute
e Cheap test
e Tighter than sphere

KAIST

o~ I 1 Vv

n-- N A \/~ aye
ounaing voiumes

o

e Oriented bounding box
e Fairly cheap to compute
e Fairly cheap test
e Generally fairly tight

e Slabs /7 K-dops

e More expensive
to compute

e Fairly cheap test \

e Can be tighter than OBB \

KAIST

18

19

Boundlng Volume Hierarchies

D\ /LI

\DVII1S)

e Organize bounding volumes recursively as
a tree

e Construct BVHs in a top-down manner

e Use median-based partitioning or other
advanced partitioning methods

A e
A BVH
KAIST

[BV overlap test (A,X)]

L (Ax)
BV overlap test

(BY), (B,Z), (CY), (C.Z)

| ®Y)
Primitive collision test
(1,5), (1,6), (2,5), (2,6)

Triangle 1 and 5 have a collision! v
(1,5)

From Duksu’s slides
2 _KAIST

21

\/

D Ll T vrav/n
DVI1 IlTAVCT

v
I

cnl
Sl

e Traverse BVHs with depth-first or breadth-

first

e Refine a BV node first that has a bigger BV

KAIST

[" ¥\ 11

hf\ : N 1 1 | " | " 1
continuo

liai A MNAtAa~nti
1HHOIUIl DCLTULIVUIL

o Al
SO LU

e BVHs are also widely used

e Models a continuous motion for a primitive,
whose positions are defined at discrete
time steps

e E.g., linear interpolation

22 KAIST

h mnll e | 'aVaYea
Computing distances

e Depth-first search on the binary tree
e Keep an updated minimum distance
e Depth-first - more pruning in search

e Prune search on branches that won’t
reduce minimum distance

e Once leaf node Is reached, examine
underlying convex polygon for exact

distance

23 KAIST

24

u
1 Vv \ VA 2l aa

DIHTTPIC TAAITIPYIC

e Set Initial distance value to Infinity

Start at the root node.
20 < infinity, so continue
searching

KAIST

n
1 Vv \ VA 2l aa

DIHTTPIC TAAITIPYIC

e Set Initial distance value to Infinity

d = 20
Start at the root node. 40 < infinity, so continue
20 < infinity, so continue searching recursively.
searching.

e Choose the nearest of the two child

N spheres to search first KAIST

26

C v I v

onlp |||p

e Eventually reach a leaf node

Q;d;‘lﬂ

40 < infinity; examine the
polygon to which the leaf
node is attached.

KAIST

C‘ v I v

olllp |||p

e Eventually reach a leaf node

3 VA

/
/
40 < infinity; examine the Call algorithm to find exact
polygon to which the leaf distance to the polygon.
node Is attached. Replace infinity with new
minimum distance (42 in this
case).

27 KAIST

28

n
1 Vv \If\lf\f\lf\lf\

C‘ If'\lf\ 7\
DIHTTPIC TAAITIPYIC

e Continue depth-first search

45 > 42; don’'t search this
branch any further

KAIST

C‘ v I v

onlp |||p

e Continue depth-first search

45 > 42; don'’t search this 60 > 42; we can prune this
branch any further half of our tree from the
search

29 KAIST

i lA +laA +
11U LIIC L

| l Vv /A ¢

D ~ I
Runni IU IIIC. J

11 v
I

ee

e Roughly balanced binary tree

e Expected time O(n log n)

e Time to generate node v is proportional to the
number of leaf nodes descended from v.

e Tree iIs built only once and can often be
pre-computed.

KAIST

31

~Alh +lhA
Uil LIIT L

§

nl I o | 'Y atals N aVa
Running t Seait ree

e Full search
e O(n) time to traverse the tree, where n = number
of leaf nodes

e Plus time to compute distance to each polygon
INn the underlying model

e The algorithm allows a pruned search:

e \Worst case as above; occurs when objects are
close together

e Best case: O(log n) + a single polygon
calculation

e Average case ranges between the two.

KAIST

32

r\f\lf'\f\lf‘
JICI1ICI

f\l oY aYaWNa
adal LAdoT

e If second object is not a single point, then
search & compare 2 trees

e Use two BVHs and perform the BVH traversal

KAIST

33

Eviancin
L\ LU I1I1UODOI1UII

- ralativia arrnr
| I« 1T UCUCICALI VO LI Ul

e When updating the minimum distance d’
between objects, set ('=(1-a)d (d = actual
distance).

® a is our relative error, why?

e Guarantee that objects are at least d” apart

d_>d=d_>(@1-a)d=(d-d_)/d<a

min
¢ (1-a)d = 0iff d = 0; correctly detects collisions
e Improves performance by pruning search

KAIST

34

IMIF\I l I

Empirical res

I+~
Lo

e Tested on a set of six 3D chess pieces
e Non-convex
e Each piece has roughly 2,000 triangles
e Each piece has roughly 5750 leaf nodes

e Relative error of 202 - more pruning in
search - speedup of 2 orders of magnitude

e Objects close together - less pruning in
search - less efficient

KAIST

35

Trackl |g| clo p

o V-Clip: Fast and Robust Polyhedral Collision

Detection, B. Mirtich, 1997

KAIST

36

W/ v/ f
KEY I

eatures

e Work for convex objects in 2-D or 3-D
environements

e Compute the exact distance
e Efficiency from motion coherence

KAIST

KAIST

e

37

38

e For convex objects, an iterative step
always results Iin a decrease In the
candidate “feature” pair.

KAIST

Features and their Voronoi
regions

e Features
e Vertices
e Edges
e For a feature X in a convex polygon, the
Voronoli region vor(X) iIs the set of points

outside of the polygon that are as close to X
as to any other feature on the polygon.

39 KAIST

Voronoi regions of points and

Q Nac
H\;Q

(

e VVoronol region of a
point

e VVoronol region of an
edge

40 KAIST

viti~nnal A~AnAIFIAN
wlitivadl CUITIUILIUIL

e Theorem: Let Xand Y be a pair of features
from disjoint convex polygons and let xe X
and ye Y be the closest pair of points
between X and Y. If xe vor(Y) and ye vor(X)
then x and y are a globally closest pair of
points between the polygons.

41 KAIST

KAIST

42

KAIST

43

I~ +h nn

1,

Sketch of the algorithm
1: Start with a candidate feature pair
(X,Y).
2. 1T (X,Y) satisfies the critical condition
3: then
return (X,Y) as the closest pair.
4: else

Update either X or Y to 1ts neighboring
feature. Go to (2).

44 KAIST

45

0 n Y oY al ay
SO-U Case
e More features
e Vertices
e Edges
e Faces

e More cases for the critical conditions
Vertex-vertex

Vertex-edge

Vertex-face

Edge-edge

Edge-face

KAIST

46

r\lf\ f'\ l 'Y e 'Y 2 o Y
wiliad J V Co VVWCIC.

e Understand collision detection and distance
computation

e Bounding volume hierarchies
e Tracking features

KAIST

47

NAav
INC

v

T A
1111ICT...

+
L

e Probabilistic Roadmaps

KAIST

