
P i it Q iProximity Queries

Sung-Eui Yoon
(윤성의)(윤성의)

C URLCourse URL:
http://sglab.kaist.ac.kr/~sungeui/MPA



Class ObjectivesClass Objectives
Understand collision detection and distance●Understand collision detection and distance 
computation
● Bounding volume hierarchies● Bounding volume hierarchies
● Tracking features
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Two geometric primitives in configuration 
spacespace

C● CLEAR(q)
Is configuration q collision 
free or not?free or not?

● LINK(q q’)● LINK(q, q’) 
Is the straight-line path 
between q and q’ 
collision-free?
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ProblemProblem
Input: two objects A and B● Input: two objects A and B

●Output:
Di t t ti t th di t● Distance computation: compute the distance 
(in the workspace) between A and B

OR

● Collision detection: determine whether A and B

OR

Collision detection: determine whether A and B
collide or not

4



Collision detection vs. distance 
computationcomputation

● The distance betweenThe distance between 
two objects (in the 
workspace) is the 
di t b t thdistance between the  
two closest points on 
the respective objectsthe respective objects

● Collision if and only if● Collision if and only if 
distance = 0
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Collision detection does not allow us to 
check for free path rigoro slcheck for free path rigorously

F
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Collision detection does not allow us to 
check for free path rigoro slcheck for free path rigorously

F
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Use distance to check for free path 
rigoro slrigorously 

F
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Use distance to check for free path 
rigoro slrigorously

Li k( 0 1)Link(q0, q1)

1: if q0N(q1) or q1N(q0)
2: then 

3:   return TRUE.

4: else

5:   q’ = (q0+q1)/2.q q q

6:   if q’ is in collision

7: then7:   then

8:     return FALSE    

9: else
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9:   else

10:    return Link(q0, q’) && Link(q1,q’).



ApplicationsApplications
● Robotics● Robotics

● Collision avoidance
● Path planning● Path planning

● Graphics & virtual environment simulation

● Haptics
● Collision detection● Collision detection
● Force proportional to distance
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Collision DetectionCollision Detection
Discrete collision detection●Discrete collision detection

● Continuous collision detection
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Discrete VS Continuous
Di t lli i d t ti (DCD)

Discrete VS Continuous
Discrete collision detection (DCD)

Time step (i)
Time step (i­1)

Time step (i)
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Discrete VS Continuous
Di t lli i d t ti (DCD)

Discrete VS Continuous
Discrete collision detection (DCD)

?
Time step (i)

Time step (i­1)
Time step (i)
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Discrete VS Continuous
C ti lli i d t ti (CCD)

Discrete VS Continuous
Continuous collision detection(CCD)

Time step (i)
Time step (i­1)

Time step (i)
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Discrete VS ContinuousDiscrete VS Continuous

Continuous CD Discrete CD

Accuracy Accurate May miss some collisions

C t ti ti Sl F tComputation time Slow Fast
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Collision DetectionCollision Detection
Discrete collision detection●Discrete collision detection

● Continuous collision detection

● These are typically accelerated by bounding 
l hi hi (BVH )volume hierarchices (BVHs)
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Bounding VolumesBounding Volumes

S h [Whitt d80]●Sphere [Whitted80]
● Cheap to compute

Ch t t● Cheap test
● Potentially very bad fit

A i li d b di b●Axis-aligned bounding box
● Very cheap to compute

Ch t t● Cheap test
● Tighter than sphere
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Bounding VolumesBounding Volumes
Oriented bounding box●Oriented bounding box
● Fairly cheap to compute
● Fairly cheap test● Fairly cheap test
● Generally fairly tight

● Slabs / K-dops● Slabs / K-dops
● More expensive

to computeto compute
● Fairly cheap test
● Can be tighter than OBBg
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Bounding Volume Hierarchies 
(BVHs)(BVHs)

Organize bounding volumes recursively as●Organize bounding volumes recursively as 
a tree

● Construct BVHs in a top down manner● Construct BVHs in a top-down manner
● Use median-based partitioning or other 

advanced partitioning methodsadvanced partitioning methods

A BVHA BVH
19

A BVHA BVH



Collision Detection with BVHsCollision Detection with BVHs

A X BV overlap test (A,X)

B C Y Z BV overlap test

(A,X)

B C Y Z BV overlap test
(B,Y), (B,Z), (C,Y), (C,Z)

(B Y)

1 Primitive collision test
(1 5) (1 6) (2 5) (2 6)

(B,Y)

(1,5), (1,6), (2,5), (2,6) 

Triangle 1 and 5 have a collision!
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(1,5)
From Duksu’s slides



BVH TraversalBVH Traversal
Traverse BVHs with depth first or breadth● Traverse BVHs with depth-first or breadth-
first

●Refine a BV node first that has a bigger BV
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Continuous Collision DetectionContinuous Collision Detection
BVHs are also widely used● BVHs are also widely used

●Models a continuous motion for a primitive, 
whose positions are defined at discretewhose positions are defined at discrete 
time steps
● E.g., linear interpolation● E.g., linear interpolation
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Computing distancesComputing distances
Depth first search on the binary tree●Depth-first search on the binary tree
● Keep an updated minimum distance
● Depth first more pruning in search● Depth-first  more pruning in search

● Prune search on branches that won’t 
reduce minimum distancereduce minimum distance

●Once leaf node is reached, examine 
underlying convex polygon for exactunderlying convex polygon for exact 
distance
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Simple exampleSimple example
Set initial distance value to infinity● Set initial distance value to infinity

Start at the root node.  
20 < infinity so continue20 < infinity, so continue 

searching
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Simple exampleSimple example
Set initial distance al e to infinit● Set initial distance value to infinity

Start at the root node.  
20 < infinity so continue

40 < infinity, so continue 
searching recursively

● Choose the nearest of the two child

20 < infinity, so continue 
searching.

searching recursively.
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● Choose the nearest of the two child 
spheres to search first



Simple exampleSimple example
Eventually reach a leaf node● Eventually reach a leaf node

40 < infinity; examine the 
polygon to which the leafpolygon to which the leaf 

node is attached.
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Simple exampleSimple example
Eventually reach a leaf node● Eventually reach a leaf node

Call algorithm to find exact 
distance to the polygon

40 < infinity; examine the 
polygon to which the leaf distance to the polygon.  

Replace infinity with new 
minimum distance (42 in this

polygon to which the leaf 
node is attached.
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minimum distance (42 in this 
case).



Simple exampleSimple example
Continue depth first search● Continue depth-first search

45 > 42; don’t search this 
branch any furtherbranch any further
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Simple exampleSimple example
Continue depth first search● Continue depth-first search

60 > 42; we can prune this 
half of our tree from the

45 > 42; don’t search this 
branch any further half of our tree from the 

search
branch any further
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Running time: build the treeRunning time: build the tree
Roughly balanced binary tree●Roughly balanced binary tree

● Expected time O(n log n)
Ti t t d i ti l t th● Time to generate node v is proportional to the 
number of leaf nodes descended from v.

● Tree is built only once and can often be● Tree is built only once and can often be 
pre-computed.
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Running time: search the treeRunning time: search the tree
Full search● Full search
● O(n) time to traverse the tree, where n = number 

of leaf nodesof leaf nodes
● Plus time to compute distance to each polygon 

in the underlying modely g
● The algorithm allows a pruned search:

● Worst case as above; occurs when objects are ; j
close together

● Best case: O(log n) + a single polygon 
l l ticalculation

● Average case ranges between the two.
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General caseGeneral case
If second object is not a single point then● If second object is not a single point, then 
search & compare 2 trees 
● Use two BVHs and perform the BVH traversal● Use two BVHs and perform the BVH traversal
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Extension: relative errorExtension: relative error 
● When updating the minimum distance d’● When updating the minimum distance d  

between objects, set                        (d = actual 
distance).

dad )1(' 

● a is our relative error, why?                        
● Guarantee that objects are at least d’ apart

● (1 a)d = 0 iff d = 0; correctly detects collisions

addddaddd  /)()1(' minminmin

● (1-a)d = 0 iff d = 0; correctly detects collisions

● Improves performance by pruning search
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Empirical resultsEmpirical results 
Tested on a set of six 3D chess pieces● Tested on a set of six 3D chess pieces
● Non-convex
● Each piece has roughly 2 000 triangles● Each piece has roughly 2,000 triangles
● Each piece has roughly 5750 leaf nodes

●Relative error of 20%  more pruning in●Relative error of 20%  more pruning in 
search  speedup of 2 orders of magnitude

●Objects close together less pruning in●Objects close together  less pruning in 
search  less efficient
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Tracking the closest pairTracking the closest pair
V Clip: Fast and Robust Polyhedral Collision● V-Clip: Fast and Robust Polyhedral Collision 
Detection, B. Mirtich, 1997
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Key featuresKey features
Work for convex objects in 2 D or 3 D●Work for convex objects in 2-D or 3-D 
environements

● Compute the exact distance● Compute the exact distance
● Efficiency from motion coherence
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Motion coherenceMotion coherence
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Iterative improvementIterative improvement

● For convex objects, an iterative step 
always results in a decrease in thealways results in a decrease in the 
candidate “feature” pair.
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Features and their Voronoi 
regionsregions

Features● Features 
● Vertices
● Edges● Edges

● For a feature X in a convex polygon, the 
Voronoi region vor(X) is the set of pointsVoronoi region vor(X) is the set of points 
outside of the polygon that are as close to X 
as to any other feature on the polygon.
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Voronoi regions of points and 
edgesedges

Voronoi region of a● Voronoi region of a 
point

● Voronoi region of an 
edgeedge
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Critical conditionCritical condition
Theorem: Let X d Y be a pair of features● Theorem: Let X and Y be a pair of features 
from  disjoint convex polygons and let x X 
and y Y be the closest pair of pointsand y Y be the closest pair of points 
between X and Y. If x vor(Y) and y vor(X) , 
then x and y are a globally closest pair of 
points between the polygonspoints between the polygons.
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Critical condition: vertex vertexCritical condition: vertex-vertex
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Critical condition: vertex edgeCritical condition: vertex-edge
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Sketch of the algorithmSketch of the algorithm
1 St t ith did t f t i1: Start with a candidate feature pair 

(X,Y).

2: if (X Y) satisfies the critical condition2: if (X,Y) satisfies the critical condition

3: then

return (X,Y) as the closest pair.

4: else

Update either X or Y to its neighboring   

feature. Go to (2). 
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3 D case3-D case

M f t●More features
● Vertices
● Edges● Edges
● Faces

●More cases for the critical conditions●More cases for the critical conditions
● Vertex-vertex
● Vertex-edge● Vertex-edge
● Vertex-face
● Edge-edgeg g
● Edge-face
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Class Objectives were:Class Objectives were:
Understand collision detection and distance●Understand collision detection and distance 
computation
● Bounding volume hierarchies● Bounding volume hierarchies
● Tracking features
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Next TimeNext Time…
Probabilistic Roadmaps● Probabilistic Roadmaps
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