
P i it Q iProximity Queries

Sung-Eui Yoon
(윤성의)(윤성의)

C URLCourse URL:
http://sglab.kaist.ac.kr/~sungeui/MPA

Class ObjectivesClass Objectives
Understand collision detection and distance●Understand collision detection and distance
computation
● Bounding volume hierarchies● Bounding volume hierarchies
● Tracking features

2

Two geometric primitives in configuration
spacespace

C● CLEAR(q)
Is configuration q collision
free or not?free or not?

● LINK(q q’)● LINK(q, q’)
Is the straight-line path
between q and q’
collision-free?

3

ProblemProblem
Input: two objects A and B● Input: two objects A and B

●Output:
Di t t ti t th di t● Distance computation: compute the distance
(in the workspace) between A and B

OR

● Collision detection: determine whether A and B

OR

Collision detection: determine whether A and B
collide or not

4

Collision detection vs. distance
computationcomputation

● The distance betweenThe distance between
two objects (in the
workspace) is the
di t b t thdistance between the
two closest points on
the respective objectsthe respective objects

● Collision if and only if● Collision if and only if
distance = 0

5

Collision detection does not allow us to
check for free path rigoro slcheck for free path rigorously

F

6

Collision detection does not allow us to
check for free path rigoro slcheck for free path rigorously

F

7

Use distance to check for free path
rigoro slrigorously

F

8

Use distance to check for free path
rigoro slrigorously

Li k(0 1)Link(q0, q1)

1: if q0N(q1) or q1N(q0)
2: then

3: return TRUE.

4: else

5: q’ = (q0+q1)/2.q q q

6: if q’ is in collision

7: then7: then

8: return FALSE

9: else

9

9: else

10: return Link(q0, q’) && Link(q1,q’).

ApplicationsApplications
● Robotics● Robotics

● Collision avoidance
● Path planning● Path planning

● Graphics & virtual environment simulation

● Haptics
● Collision detection● Collision detection
● Force proportional to distance

10

Collision DetectionCollision Detection
Discrete collision detection●Discrete collision detection

● Continuous collision detection

11

Discrete VS Continuous
Di t lli i d t ti (DCD)

Discrete VS Continuous
Discrete collision detection (DCD)

Time step (i)
Time step (i­1)

Time step (i)

12 From Duksu’s slides

Discrete VS Continuous
Di t lli i d t ti (DCD)

Discrete VS Continuous
Discrete collision detection (DCD)

?
Time step (i)

Time step (i­1)
Time step (i)

13

Discrete VS Continuous
C ti lli i d t ti (CCD)

Discrete VS Continuous
Continuous collision detection(CCD)

Time step (i)
Time step (i­1)

Time step (i)

14

Discrete VS ContinuousDiscrete VS Continuous

Continuous CD Discrete CD

Accuracy Accurate May miss some collisions

C t ti ti Sl F tComputation time Slow Fast

15

Collision DetectionCollision Detection
Discrete collision detection●Discrete collision detection

● Continuous collision detection

● These are typically accelerated by bounding
l hi hi (BVH)volume hierarchices (BVHs)

16

Bounding VolumesBounding Volumes

S h [Whitt d80]●Sphere [Whitted80]
● Cheap to compute

Ch t t● Cheap test
● Potentially very bad fit

A i li d b di b●Axis-aligned bounding box
● Very cheap to compute

Ch t t● Cheap test
● Tighter than sphere

17

Bounding VolumesBounding Volumes
Oriented bounding box●Oriented bounding box
● Fairly cheap to compute
● Fairly cheap test● Fairly cheap test
● Generally fairly tight

● Slabs / K-dops● Slabs / K-dops
● More expensive

to computeto compute
● Fairly cheap test
● Can be tighter than OBBg

18

Bounding Volume Hierarchies
(BVHs)(BVHs)

Organize bounding volumes recursively as●Organize bounding volumes recursively as
a tree

● Construct BVHs in a top down manner● Construct BVHs in a top-down manner
● Use median-based partitioning or other

advanced partitioning methodsadvanced partitioning methods

A BVHA BVH
19

A BVHA BVH

Collision Detection with BVHsCollision Detection with BVHs

A X BV overlap test (A,X)

B C Y Z BV overlap test

(A,X)

B C Y Z BV overlap test
(B,Y), (B,Z), (C,Y), (C,Z)

(B Y)

1 Primitive collision test
(1 5) (1 6) (2 5) (2 6)

(B,Y)

(1,5), (1,6), (2,5), (2,6)

Triangle 1 and 5 have a collision!

20

(1,5)
From Duksu’s slides

BVH TraversalBVH Traversal
Traverse BVHs with depth first or breadth● Traverse BVHs with depth-first or breadth-
first

●Refine a BV node first that has a bigger BV

21

Continuous Collision DetectionContinuous Collision Detection
BVHs are also widely used● BVHs are also widely used

●Models a continuous motion for a primitive,
whose positions are defined at discretewhose positions are defined at discrete
time steps
● E.g., linear interpolation● E.g., linear interpolation

22

Computing distancesComputing distances
Depth first search on the binary tree●Depth-first search on the binary tree
● Keep an updated minimum distance
● Depth first more pruning in search● Depth-first  more pruning in search

● Prune search on branches that won’t
reduce minimum distancereduce minimum distance

●Once leaf node is reached, examine
underlying convex polygon for exactunderlying convex polygon for exact
distance

23

Simple exampleSimple example
Set initial distance value to infinity● Set initial distance value to infinity

Start at the root node.
20 < infinity so continue20 < infinity, so continue

searching

24

Simple exampleSimple example
Set initial distance al e to infinit● Set initial distance value to infinity

Start at the root node.
20 < infinity so continue

40 < infinity, so continue
searching recursively

● Choose the nearest of the two child

20 < infinity, so continue
searching.

searching recursively.

25

● Choose the nearest of the two child
spheres to search first

Simple exampleSimple example
Eventually reach a leaf node● Eventually reach a leaf node

40 < infinity; examine the
polygon to which the leafpolygon to which the leaf

node is attached.

26

Simple exampleSimple example
Eventually reach a leaf node● Eventually reach a leaf node

Call algorithm to find exact
distance to the polygon

40 < infinity; examine the
polygon to which the leaf distance to the polygon.

Replace infinity with new
minimum distance (42 in this

polygon to which the leaf
node is attached.

27

minimum distance (42 in this
case).

Simple exampleSimple example
Continue depth first search● Continue depth-first search

45 > 42; don’t search this
branch any furtherbranch any further

28

Simple exampleSimple example
Continue depth first search● Continue depth-first search

60 > 42; we can prune this
half of our tree from the

45 > 42; don’t search this
branch any further half of our tree from the

search
branch any further

29

Running time: build the treeRunning time: build the tree
Roughly balanced binary tree●Roughly balanced binary tree

● Expected time O(n log n)
Ti t t d i ti l t th● Time to generate node v is proportional to the
number of leaf nodes descended from v.

● Tree is built only once and can often be● Tree is built only once and can often be
pre-computed.

30

Running time: search the treeRunning time: search the tree
Full search● Full search
● O(n) time to traverse the tree, where n = number

of leaf nodesof leaf nodes
● Plus time to compute distance to each polygon

in the underlying modely g
● The algorithm allows a pruned search:

● Worst case as above; occurs when objects are ; j
close together

● Best case: O(log n) + a single polygon
l l ticalculation

● Average case ranges between the two.

31

General caseGeneral case
If second object is not a single point then● If second object is not a single point, then
search & compare 2 trees
● Use two BVHs and perform the BVH traversal● Use two BVHs and perform the BVH traversal

32

Extension: relative errorExtension: relative error
● When updating the minimum distance d’● When updating the minimum distance d

between objects, set (d = actual
distance).

dad)1(' 

● a is our relative error, why?
● Guarantee that objects are at least d’ apart

● (1 a)d = 0 iff d = 0; correctly detects collisions

addddaddd  /)()1(' minminmin

● (1-a)d = 0 iff d = 0; correctly detects collisions

● Improves performance by pruning search

33

Empirical resultsEmpirical results
Tested on a set of six 3D chess pieces● Tested on a set of six 3D chess pieces
● Non-convex
● Each piece has roughly 2 000 triangles● Each piece has roughly 2,000 triangles
● Each piece has roughly 5750 leaf nodes

●Relative error of 20%  more pruning in●Relative error of 20%  more pruning in
search  speedup of 2 orders of magnitude

●Objects close together less pruning in●Objects close together  less pruning in
search  less efficient

34

Tracking the closest pairTracking the closest pair
V Clip: Fast and Robust Polyhedral Collision● V-Clip: Fast and Robust Polyhedral Collision
Detection, B. Mirtich, 1997

35

Key featuresKey features
Work for convex objects in 2 D or 3 D●Work for convex objects in 2-D or 3-D
environements

● Compute the exact distance● Compute the exact distance
● Efficiency from motion coherence

36

Motion coherenceMotion coherence

37

Iterative improvementIterative improvement

● For convex objects, an iterative step
always results in a decrease in thealways results in a decrease in the
candidate “feature” pair.

38

Features and their Voronoi
regionsregions

Features● Features
● Vertices
● Edges● Edges

● For a feature X in a convex polygon, the
Voronoi region vor(X) is the set of pointsVoronoi region vor(X) is the set of points
outside of the polygon that are as close to X
as to any other feature on the polygon.

39

Voronoi regions of points and
edgesedges

Voronoi region of a● Voronoi region of a
point

● Voronoi region of an
edgeedge

40

Critical conditionCritical condition
Theorem: Let X d Y be a pair of features● Theorem: Let X and Y be a pair of features
from disjoint convex polygons and let x X
and y Y be the closest pair of pointsand y Y be the closest pair of points
between X and Y. If x vor(Y) and y vor(X) ,
then x and y are a globally closest pair of
points between the polygonspoints between the polygons.

41

Critical condition: vertex vertexCritical condition: vertex-vertex

42

Critical condition: vertex edgeCritical condition: vertex-edge

43

Sketch of the algorithmSketch of the algorithm
1 St t ith did t f t i1: Start with a candidate feature pair

(X,Y).

2: if (X Y) satisfies the critical condition2: if (X,Y) satisfies the critical condition

3: then

return (X,Y) as the closest pair.

4: else

Update either X or Y to its neighboring

feature. Go to (2).

44

3 D case3-D case

M f t●More features
● Vertices
● Edges● Edges
● Faces

●More cases for the critical conditions●More cases for the critical conditions
● Vertex-vertex
● Vertex-edge● Vertex-edge
● Vertex-face
● Edge-edgeg g
● Edge-face

45

Class Objectives were:Class Objectives were:
Understand collision detection and distance●Understand collision detection and distance
computation
● Bounding volume hierarchies● Bounding volume hierarchies
● Tracking features

46

Next TimeNext Time…
Probabilistic Roadmaps● Probabilistic Roadmaps

47

