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Class ObjectivesClass Objectives
Understand the RRT technique and its●Understand the RRT technique and its 
recent advancements
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GoalGoal
Present an efficient randomized path● Present an efficient randomized path 
planning algorithm for single-query 
problemsproblems
● Converges quickly
● Probabilistically completey p
● Works well in high-dimensional C-space
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Motivation –
Performance vs ReliabilityPerformance vs. Reliability

Complete algorithms [Schwartz and M● Complete algorithms [Schwartz and M. 
Sharir 83, Canny 88]
● Most reliable needs high computational power● Most reliable, needs high computational power
● Only used to low-dimensional C-space

●Randomized potential field [Barraquand●Randomized potential field [Barraquand 
and Latombe 91]
● Greedy & relaxation approachy pp
● Fast in many cases, but not in every case

● Probabilistic roadmap [Kavraki et al. 96]p [ ]
● Reliable, but needs preprocessing
● Good for multiple-query problems
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ApproachApproach
Design a simple reliable and fast●Design a simple, reliable, and fast  
algorithm for single-query problems
● Use RRT (Rapidly-exploring Random Trees)● Use RRT (Rapidly-exploring Random Trees) 

[LaValle 98] for reliability
● Develop a greedy heuristic to converge quicklyp g y g q y
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Rapidly Exploring Random TreeRapidly-Exploring Random Tree
A growing tree from an initial state● A growing tree from an initial state
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RRT Construction AlgorithmRRT Construction Algorithm
Extend a new vertex in each iteration● Extend a new vertex in each iteration

ε qnew

qqnear

qinit
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Advantages of RRTAdvantages of RRT
Biased toward unexplored space● Biased toward unexplored space

● Probabilistically complete
● Always connected
● Can handle nonholonomic constraints and 

hi h d f f dhigh degrees of freedom
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OutlineOutline
Introduction● Introduction

●Rapidly-exploring Random Tree
●Overview
●RRT-Connect Algorithm
●Demo
●Results
● Conclusion
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Overview Planning with RRTOverview – Planning with RRT
Extend RRT until a nearest vertex is close● Extend RRT until a nearest vertex is close 
enough to the goal state

● Probabilistically complete but converge● Probabilistically complete, but converge 
slowly
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Overview With Dual RRTOverview – With Dual RRT
Extend RRTs from both initial and goal● Extend RRTs from both initial and goal 
states

● Find path much more quickly● Find path much more quickly
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737 nodes are used



Overview With RRT Connect
Aggressively connect the dual trees using a

Overview – With RRT-Connect
● Aggressively connect the dual trees using a 

greedy heuristic
● Extend & connect trees alternatively● Extend & connect trees alternatively
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42 nodes are used



RRT Connect AlgorithmRRT-Connect Algorithm
Starting from both initial and goal states● Starting from both initial and goal states

● Extend a tree and try to connect the new 
vertex and another treevertex and another tree

● Alternatively repeat until two trees are 
actually connectactually connect

qinit qgoal
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Variations of RRT ConnectVariations of RRT-Connect
Extend & Extend● Extend & Extend
● Less aggressive, but works well on 

nonholonomic constrainsnonholonomic constrains
● Connect & Connect

● Stronger greedy● Stronger greedy
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Voronoi RegionVoronoi Region
An RRT is biased by large Voronoi regions● An RRT is biased by large Voronoi regions 
to rapidly explore, before uniformly 
covering the spacecovering the space
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RRT Construction AlgorithmRRT Construction Algorithm
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RRT Connect AlgorithmRRT Connect Algorithm
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ResultsResults
0 13s 1 52s and● 0.13s, 1.52s, and 
1.02s on 270MHz

● Improves performance 
by a factor of three orby a factor of three or 
four in uncluttered 
environments

● Slightly improves inSlightly improves in 
very cluttered 
environments
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ResultsResults
● Translations &● Translations & 

rotations

● 12s

● 6-DOF

● 4s
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ConclusionsConclusions
Reasonably balanced path planning●Reasonably balanced path planning 
between greedy exploration (as in a 
potential field) and uniform exploration (aspotential field) and uniform exploration (as 
in a probabilistic roadmap)

● Simple and practical methodp p

● The huge performance improvements● The huge performance improvements 
happen in relatively open spaces only

● Theoretical convergence ratio is not givenTheoretical convergence ratio is not given
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GoalGoal
Present an efficient randomized path● Present an efficient randomized path 
planning algorithm on the kinodynamic 
planning problemplanning problem
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Holonomic Path PlanningHolonomic Path Planning
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Nonholonomic Path PlanningNonholonomic Path Planning

● Consider kinematic constraints
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Kinodynamic Path PlanningKinodynamic Path Planning

● Consider kinematic + dynamic constraints
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Kinodynamic Path PlanningKinodynamic Path Planning
Conventional planning: Decouple problems● Conventional planning: Decouple problems
● Solve basic path planning
● Find trajectory and controller that satisfies the● Find trajectory and controller that satisfies the 

dynamics and follows the path
● [Bobrow et al. 85, Latombe 91, Shiller and Dubowsky 91][ , , y ]

● PSPACE-hard in general [Reif 79]
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OutlineOutline
Introduction● Introduction

● Kinodynamic Planning
● Problem Formulation
●Randomized Kinodynamic Planning
●Rapidly-Exploring Random Trees (RRTs)
●Demo
●Results
● Conclusion● Conclusion

28



State Space FormulationState Space Formulation
Kinodynamic planning→ 2n dimensional● Kinodynamic planning → 2n-dimensional 
state space

spacethedenote C-C
space state  thedenote X

XxCqqqx  ,for  ),,( 

dqdqdq ]              [ 21
21 dt

dq
dt

dq
dt
dqqqqx n

n 
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Constraints in State SpaceConstraints in State Space
xxGqqqh 0)(becomes0)( 

nm,m,i
xxGqqqh ii

2  and  1for 
,0),(  becomes 0),,(






● Constraints can be written in:
),( uxfx  ),(f

inputsor  controls allowable ofSet :   , UUu
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Solution TrajectorySolution Trajectory
Defined as a time parameterized●Defined as a time-parameterized 
continuous path

t i tthti fi]0[ XT

Obt i d b i t ti

sconstraint thesatisfies ,],0[: freeXT 

)(f●Obtained by integrating                
● Solution: Finding a control function 

),( uxfx 

UTu ],0[:
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Randomized Kinodynamic PlanningRandomized Kinodynamic Planning

Randomized potential fields●Randomized potential fields 
● [Barraquand and Latombe 91, Challou et al. 95]
● Set u which reduces the potential● Set u which reduces the potential
● Leads oscillations
● Hard to design good potential fields● Hard to design good potential fields

●Randomized roadmap
● [Amato and Wu 96 Kavraki et al 96]● [Amato and Wu 96, Kavraki et al. 96]
● Hard to connect two configurations (or states), 

except for specific environments [Svestka and p p
Overmars 95, Reeds and Schepp 90, Bushnell et al. 95…]
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Rapidly Exploring Random TreeRapidly-Exploring Random Tree
A growing tree from initial state● A growing tree from initial state
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Rapidly Exploring Random TreeRapidly-Exploring Random Tree
Extend a new vertex in each iteration● Extend a new vertex in each iteration

qnewu

qqnear

qinit
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Results 200MHz 128MBResults – 200MHz, 128MB
● Planar translating● Planar translating

● X=4 DOF

● Four different● Four different 
controls: up, 
down, left, right , , g
forces

● 500~2,500 nodes
● 5~15sec

● Planar TR+RO● Planar TR+RO
● X=6 DOF

13 600 d
36

● 13,600 nodes
● 4.2min



Results 200MHz 128MBResults – 200MHz, 128MB
3D t l ti● 3D translating

● X=6 DOF
● 16,300 nodes
● 4.1min

● 3D TR+RO● 3D TR+RO
● X=12 DOF

23 800 d● 23,800 nodes
● 8.4min
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ConclusionsConclusions
Take advantages from both randomized● Take advantages from both randomized 
potential fields and roadmaps
● “Drives forward” like potential fields● Drives forward  like potential fields
● Quickly and uniformly explores like roadmaps

● Efficient and reliable method● Efficient and reliable method
● Practical!
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A R idl l i R d T (RRT)A Rapidly-exploring Random Tree (RRT)
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V i Bi d E l tiVoronoi Biased Exploration

41 Is this always a good idea?



V i Di i R 2Voronoi Diagram in R 2
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V i Di i R 2Voronoi Diagram in R 2
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V i Di i R 2Voronoi Diagram in R 2
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R fi t E iRefinement vs. Expansion

refinement expansion

Wh ill th d l f ll? H t t l th b h i f RRT?
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Where will the random sample fall? How to control the behavior of RRT?



D t i i th B dDetermining the Boundary

Expansion Balanced refinement andExpansion 
dominates

Balanced refinement and 
expansion

46 The tradeoff depends on the size of the bounding box



C t lli th V i BiControlling the Voronoi Bias

● Refinement is good when multiresolution search 
is needed

● Expansion is good when the tree can grow and 
not blocked by obstacles

Main motivation:
● Voronoi bias does not take into account obstacles
● How to incorporate the obstacles into Voronoi 

bias?
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B TBug Trap

Small Bounding Box Large Bounding Box

Which one will perform better?

Small Bounding Box                             Large Bounding Box
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Which one will perform better?



V i Bi f th O i i l RRTVoronoi Bias for the Original RRT
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Vi ibilit B d Cli i f th V i R iVisibility-Based Clipping of the Voronoi Regions
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Nice idea, but how can this be done in practice?
Even better: Voronoi diagram for obstacle-based metric



A B d N dA Boundary Node

(a) Regular RRT, unbounded Voronoi region( ) g , g

(b) Visibility region

(c) Dynamic domain
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(c) Dynamic domain



A N B d N dA Non-Boundary Node

(a) Regular RRT, unbounded Voronoi region( ) g , g

(b) Visibility region

(c) Dynamic domain
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(c) Dynamic domain



D i D i RRT BiDynamic-Domain RRT Bias
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D i D i RRT C t tiDynamic-Domain RRT Construction
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D i D i RRT BiDynamic-Domain RRT Bias
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Tradeoff between nearest neighbor calls and collision detection calls



E i tExperiments

● 333 Mhz machine

Two kinds of experiments:

● Controlled experiments for toy problems● Controlled experiments for toy problems

● Challenging benchmarks from industry and biology
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Sh i ki B TShrinking Bug Trap

Large                      Medium                   Small
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Sh i ki B TShrinking Bug Trap

58
The smaller the bug trap, the better the improvement



Wi M t ( t f KINEO)Wiper Motor (courtesy of KINEO)

 6 dof problem
 CD calls are 

expensive

59

expensive



MoleculeMolecule
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L b i thLabyrinth

 3 dof problem
 CD calls are not 

expensive
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expensive



C l iConclusions

● Controlling Voronoi bias is important in RRTs
● Provides dramatic performance improvements● Provides dramatic performance improvements 

on some problems
● Does not incur much penalty for unsuitableDoes not incur much penalty for unsuitable 

problems

Work in Progress:
● There is a radius parameter; adaptive tuning is● There is a radius parameter; adaptive tuning is 

possible
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Class Objectives were:Class Objectives were:
Understand the RRT technique and its●Understand the RRT technique and its 
recent advancements

63


