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Class Objectives

e Motion planning framework
e Classic motion planning approaches
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Configuration Space: |
Tool to Map a Robot to a Point

N
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Problem
Input

= Robot represented as a
point in the plane

= Obstacles represented as
polygons

= [nitial and goal positions

Output

A collision-free path
between the initial and
goal positions
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Types of Path Constraints

" Local constraints:
lie in free space

= Differential constraints:
have bounded curvature

= Global constraints:
have minimal length
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Example: Car-Like Robot
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Motion-Planning Framework

Continuous representation

(configuration space formulation)

Discretization

(random sampling, processing critical geometric events)

l

Graph searching

(blind, best-first, A*)
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Visibility graph method

Observation: If thereis a a L
collision-free path between two
points, then there is a polygonal
path that bends only at the
obstacles vertices.

Why?

Any collision-free path can be
transformed into a polygonal path
that bends only at the obstacle
vertices.

A polygonal path is a piecewise
inear curve.




Visibility Graph

e A visibility graph is a graph such that
e Nodes: s, g, or obstacle vertices
e Edges: An edge exists between nodes u and v if

the line segment between u and v is an
obstacle edges or it does not intersect the

obstacles
11 KAIST
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Visibility Graph
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e A visibility graph
e Introduced in the late 60s

e Can produce shortest paths in 2-D
configuration spaces
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S

imple Algorithm

e Input: s, g, polygonal obstacles
e Output: visibility graph G

1

2
3
4
5!
6
/
8
9

. for every pair of nodes u, v
If segment (u, v) Is an obstacle edge then

Insert edge (u, v) into G;
else

for every obstacle edge e

If segment (u, v) intersects e
go to (1);

iInsert edge (u, v) into G;

. Search a path with G using A*
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Computation Efficiency

1: for every pair of nodes u, v O(n?)
2: i1f segment (u, v) is an obstacle edge then O(n)
3 Insert edge (u, v) into G;

4: else

5:  for every obstacle edge e O(n)
6 If segment (u, v) intersects e

7 go to (1);

8 Insert edge (u, v) into G;

e Simple algorithm: O(n3) time
e More efficient algorithms
e Rotational sweep O(n? log n) time, etc.

« ® O(n?) space KAIST
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Motion-Planning Framework

Continuous representation

(configuration space formulation)

Discretization

(random sampling, processing critical geometric events)

}

Graph searching
(blind, best-first, A*)
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Graph Search Algorithms

e Breadth, depth-first, best-first
e Dijkstra’s algorithm
o A*
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Breadth-first search




Breadth-first search




Breadth-first search




Breadth-first search




Dijkstra’s Shortest Path
Algorithm
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e Given a (non-negative) weighted graph,
two vertices, s and g:

e Find a path of minimum total weight between

them
e Also, find minimum paths to other vertices

e Has O (V] IglV] + |E])
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Dijkstra’s Shortest Path
Algorithm

e AsetS

e Contains vertices whose final shortest-path cost has
been determined

e DIJKSTRA (G, s)
1. Initialize-Single-Source (G, s)

2. S € empty

3. Queue < Vertices of G

4. While Queue is not empty

5 Do u € min-cost from Queue
6 S € union of S and {u}

7 for each vertex v in Adj [u]
8 do RELAX (u, v)
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Dijkstra’s Shortest Path
Algorithm

(d) e)
Black vertices are in the set.
White vertices are in the queue.
Shaded one is chosen for relaxation.
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A* Search Algorithm

e An extension of Dijkstra’s algorithm based
on a heuristic estimate

e Conservatively estimate the cost-to-go from a
vertex to the goal

e The estimate should not be greater than the
optimal cost-to-go

e Sort vertices based on *“cost-to-come + the
estimated cost-to-go”

e Can find optimal solutions
with fewer steps

free space
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Best-First Search

¢ Pick a next node based on an estimate of
the optimal cost-to-go cost

e Greedily finds solutions that look good
e Solutions may not be optimal

e Can find solutions quite fast, but can be also
very slow

25 KAIST



Framework

continuous representation

!

discretization
construct visibility graph

!

graph searching
breadth-first search
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Computational Efficiency

e Running time O(n3)
e Compute the visibility graph
e Search the graph

e Space 0O(n?)

e Can we do better?
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Classic Path Planning
Approaches

e Roadmap
e Represent the connectivity of the free space by
a network of 1-D curves
e Cell decomposition

e Decompose the free space into simple cells and
represent the connectivity of the free space by
the adjacency graph of these cells

e Potential field

e Define a function over the free space that has a
global minimum at the goal configuration and
follow Its steepest descent

28 KAIST



Classic Path Planning
Approaches

e Roadmap
e Represent the connectivity of the free space by
a network of 1-D curves
e Cell decomposition

e Decompose the free space into simple cells and
represent the connectivity of the free space by
the adjacency graph of these cells

e Potential field

e Define a function over the free space that has a
global minimum at the goal configuration and
follow Its steepest descent
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Roadmap Methods

e Visibility Graph
e Shakey project, SRI
[Nilsson 69]
e Voronoi diagram

e Introduced by
computational
geometry researchers

e Generate paths that
maximize clearance

e O(nlog n) time and
O(n) space
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Other Roadmap Methods

e Visibility graph
e Voronoi diagram

e Silhouette

e First complete general method that applies to
spaces of any dimension and is singly
exponential in # of dimensions [Canny, 87]

e Probabilistic roadmaps

KAIST



Classic Path Planning
Approaches

e Roadmap
e Represent the connectivity of the free space by
a network of 1-D curves
e Cell decomposition

e Decompose the free space into simple cells and
represent the connectivity of the free space by
the adjacency graph of these cells

e Potential field

e Define a function over the free space that has a
global minimum at the goal configuration and
follow Its steepest descent
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Cell-Decomposition Methods

e Two classes of methods:
e Exact and approximate cell decompositions

e Exact cell decomposition

e The free space F is represented by a collection
of non-overlapping cells whose union is exactly
F

e Example: trapezoidal decomposition

KAIST
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Trapezoidal Decomposition
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Trapezoidal Decomposition
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Trapezoidal Decomposition

Adjacency graph

KAIST



Trapezoidal Decomposition
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Trapezoidal Decomposition

.5 critical events > criticality-based decomposition KAIST
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Trapezoidal Decomposition

11 Planar sweep > O(n log n) time, O(n) space

KAIST



Cell-Decomposition Methods

e Two classes of methods:
e Exact and approximate cell decompositions

e Approximate cell decomposition

e The free space F is represented by a collection
of non-overlapping cells whose union is
contained in F

e Cells usually have simple, regular shapes (e.g.,
rectangles and squares)

e Facilitates hierarchical space decomposition
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Quadtree decomposition




Octree decomposition

5
6
1
B—a= 2 7
adll EMPTY cell £

MIXED cell . FULL ecl




Sketch of Algorithm

1. Decompose the free space F into cells

2. Search for a sequence of mixed or free
cells that connect that initial and goal
positions

3. Further decompose the mixed

4. Repeat 2 and 3 until a sequence of free
cells is found

43 KAIST



Classic Path Planning
Approaches

e Roadmap
e Represent the connectivity of the free space by
a network of 1-D curves
e Cell decomposition

e Decompose the free space into simple cells and
represent the connectivity of the free space by
the adjacency graph of these cells

e Potential field

e Define a function over the free space that has a
global minimum at the goal configuration and
follow Its steepest descent
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Potential Field Methods

e Initially proposed for real-time collision
avoidance [Khatib, 86]

e Hundreds of papers published on it

Goal




Potential Field

e A scalar function over the free space

e To navigate the robot applies a force
proportional to the negated gradient of the
potential field

e A navigation function is an ideal potential
field that

Has global minimum at the goal

Has no local minima

Grows to infinity near obstacles

Is smooth
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Attractive and Repulsive fields

47
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Local Minima

¢ What can we do?

e Escape from local minima by taking random
walks

e Build an ideal potential field that does not have
local minima

KAIST



Sketch of Algorithm

e Place a regular grid G over the
configuration space

e Compute the potential field over G

e Search G using a best-first algorithm with
potential field as the heuristic function

49 KAIST
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Question

e Can such an ideal potential field be
constructed efficiently in general?

KAIST



Completeness

e A complete motion planner always returns
a solution when one exists and indicates
that no such solution exists otherwise

e Is the visibility algorithm complete? Yes

e How about the exact cell decomposition
algorithm and the potential field algorithm?

51 KAIST



52

Class Objectives were:

e Motion planning framework
e Classic motion planning approaches
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Homework for Every Class

e Go over the next lecture slides

e Come up with one guestion on what we
have discussed today and submit at the end
of the class

e 1 for typical questions

e 2 for questions with thoughts or that surprised
me

e Write a question at least 10 times
e Do that out of 2 classes
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Homework

e Install Open Motion Planning Library
(OMPL)

e Create a scene and a robot

e Find a collision-free path and visualize the
path
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Homework

e Deadline: 11:59pm, Sep.-30
e Delivery: send an email to TA
(limgO0On@kaist.ac.kr) that contains:

e An image that shows a scene with a robot with
a computed path

e Our TA: & & &, x7851, N1, 9245
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Conf. Deadline

e ICRA
e Sep., 2013

e IROS
e Mar., 2014

56
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Next Time....

e Configuration spaces
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