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Coming Schedule and Homework

e Browse recent papers (2011 — 2013)

e You need to present two papers at the class
and give your mid-term & final presentations

e Declare your chosen 3 papers at the board
by Oct-13 (Sun.)

e First come, first served
e Decide our talk schedule on Oct.-14 (Mon)

e Student presentations will start right after
the mid-term exam

e 2 talks per each class
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Class Objectives

e Configuration space
e Definitions and examples
e Obstacles
e Paths
e Metrics
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Configuration Space

e Definitions and examples
e Obstacles

e Paths

e Metrics
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Obstacles in the Configuration Space

e A configuration q is collision-free, or free, If
a moving object placed at g does not
Intersect any obstacles in the workspace

e The free space F Is the set of free
configurations

e A configuration space obstacle (C-obstacle)
IS the set of configurations where the
moving object collides with workspace
obstacles
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Disc in 2-D Workspace

workspace configuration
space
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Polygonal Robot Translating in 2-D
Workspace

configuration

workspace
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Polygonal Robot Translating & Rotating
in 2-D Workspace

workspace configuration
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Polygonal Robot Translating & Rotating
in 2-D Workspace
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Articulated Robot in 2-D
Workspace
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C-Obstacle Construction

e INput:

e Polygonal moving object translating in 2-D
workspace

e Polygonal obstacles

e Output: configuration space obstacles
represented as polygons
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Minkowski Sum

e The Minkowski sum of two sets P and Q,
denoted by P®Q, is defined as

P3Q={p+q|p P, eQ } %q
P

e Similarly, the Minkowski difference Is
defined as

PeQ={p-q|peP,qeQ}
— P(—]}-Q
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Minkowski Sum of Convex
Polygons

e The Minkowski sum of two convex
polygons P and Q of m and n vertices
respectively is a convex polygon P& Q of m
+ n vertices.

e The vertices of P® Q are the “sums” of vertices
of P and Q.
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Observation

e If P I1s an obstacle in the workspace and M
IS & moving object. Then the C-space
obstacle corresponding to P iIs Pe M
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Computing C-obstacles
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Computational efficiency

e Running time O(n+m)
e Space O(n+m)

e Non-convex obstacles

e Decompose into convex polygons (e.q.,
triangles or trapezoids), compute the
Minkowski sums, and take the union

e Complexity of Minkowksi sum O(n?m?)

e 3-D workspace
e Convex case: O(nhm)
e Non-convex case: O(n’m3)
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Worst case example

e O(n’m?) complexity

2D example
Agarwal et al. 02
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444 tris

1,134 tris




Union of
66,667 primitives
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Sensors!

sonar rangefinder

Robots’ link to the external world... —

=S

Sensors, sensors, sensors!
and tracking what is sensed: world models

gyro

compass

IR rangefinder o CMU cam with on-
sonar rangefinder board processing

Odometry' e 16-735, Howie Choset with slides from G.D. Hager and Z. Dodds



Laser Ranging

Sick Laser

LIDAR

LIDAR map

16-735, Howii-&hb38€Hith slides from G.D. Hager and Z. Dodds

ranne Tinder
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Kinect

e Resolution
e 640%480 pixels @ 30 Hz (RGB camera)

e 640%X480 pixels @ 30 Hz (IR depth-finding
camera)
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Configuration space

e Definitions and examples
e Obstacles

e Paths

e Metrics
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Paths in the configuration space

o A
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:)ath inCisa continuous curve connecting two

configurations g and q’:

7:5€[01] > 7(s)eC

such that #(0)=qgand #z(1)=q’.
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Constraints on paths

e A trajectory iIs a path parameterized by time:
7:te[0,T]>r(t)eC

e Constraints
e Finite length

e Bounded curvature
e Smoothness

e Minimum length

e Minimum time

e Minimum energy
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Free Space Topology

e A free path lies entirely in the free space F.

e The moving object and the obstacles are
modeled as closed subsets, meaning that
they contain their boundaries.

e One can show that the C-obstacles are
closed subsets of the configuration space C

as well.

e Conseqguently, the free space F Is an open
subset of C.
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Semi-Free Space

e A configuration g iIs semi-free If the moving
object placed g touches the boundary, but
not the interior of obstacles.

e Free, or
e In contact

e The semi-free space Is a closed subset of C.
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Example .
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Example
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Homotopic Paths

e Two paths t and 7’ (that map from U to V) with the same
endpoints are homotopic If one can be continuously
deformed into the other:

h:Ux[01] >V
with h(s,0) = t(s) and h(s,1) = ’(s). L

e A homotopic class of paths
contains all paths that are
homotopic to one another.
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Connectedness of C-Space

e C Is connected If every two configurations
can be connected by a path.

e C Is simply-connected If any two paths
connecting the same endpoints are
homotopic.

Examples: R?or R3

e Otherwise C Is multiply-connected.
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Connectedness of C-Space

e C Is connected If every two configurations
can be connected by a path.

e C Is simply-connected If any two paths
connecting the same endpoints are
homotopic.

Examples: R?or R3

e Otherwise C Is multiply-connected.
Examples: St and SO(3) are multiply- connected:

e In Si, infinite number of homotopy classes

e In SO(3), only two homotopy classes
33 KAIST
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Configuration space

e Definitions and examples
e Obstacles

e Paths

e Metrics
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Metric in Configuration Space

e A metric or distance function d in a
configuration space C is a function

d:(0,0)eC? —>d(q,q')>0
such that (9,9') (9,9')

e d(g,q’)=01fandonly ifg=qa’,
e d(q,q’)=d(q’, 9),
e d(q,9')<d(q,q")+d(q".q") .

KAIST



Example

e Robot A and a point x on A

e X(q): position of x in the workspace when A
IS at configuration g

e A distance d in C is defined by
d(a, a’) = max,, || x(a) = x(@’) |

, where | |x-y] ] denotes the Euclidean
distance between points x and y in the
workspace.
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Lp Metrics

n

40 X) :(z

1=1

e L,: Euclidean metric
e L,: Manhattan metric
oL.:Max (| x;—x;])

X —x;\pj%

KAIST



38

Examples in R% x S1

e Consider R? x St
e 0=(X,v,0,q9 =(X,y’, &) with 6 & € [0,2n)
ea=mn{|60-]|,2rn-]16-0"] }

* d(g, g’) =sqrt( (x-x")* + (y-y’)* + a?) )
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Class Objectives were:

e Configuration space
Definitions and examples
Obstacles

Paths

Metrics
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Next Time....

e Collision detection and distance
computation
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