
CS686:
Path Planning for Point Robots

Sung-Eui Yoon
(윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/MPA

2

Class Objectives
●Motion planning framework

● Representations of robots and space
● Discretization into a graph
● Search methods

3

My View on Research Directions
●Many robots are

available
● Have different sensors

and controls
● Basic controls are

developed with such
robots
● Primitive motions are

developed together

● Therefore, motion/path
planning are widely
researched

4

My View on Research Directions
●General motion planning

tools
● Primitive controls are

available at HW vendors
● How can we design a

standard MP library working
with those different robots?

● For example, OpenGL for the
robotics field; vendors
support OpenGL, and
programmer uses OpenGL for
their applications

OS for Robots

MP layer

Low-level
control layer

5

My View on Research Directions
●High-level motion strategy are necessary

● Optimal paths given constraints
● Handling multiple robots for certain tasks
● E.g., how can we efficiently assemble and

disassemble the Boeing plane?

6

My View on Research Directions
●High-level motion strategy are necessary

● Optimal paths given constraints
● Handling multiple robots for certain tasks
● E.g., “Clean them!”

7

My View on Research Directions
●High-level motion strategy are necessary

● Optimal paths given constraints
● Handling multiple robots for certain tasks
● E.g., dangerous places for human

8

Configuration Space:
Tool to Map a Robot to a Point

Workspace Configuration space
(C-Space)

9 Courtesy of Prof. David Hsu

Workspace == C-Space
in this simple case!

10

free space

start

goal

free path

Problem

11

semi-free path

Problem

12

 Local constraints:
lie in free space

 Differential constraints:
have bounded curvature

 Global constraints:
have minimal length

Types of Path Constraints

13

An example of differential constraints

14

Continuous representation
(configuration space formulation)

Discretization
(random sampling, processing critical geometric events)

Graph searching
(blind, best-first, A*)

Motion-Planning Framework

15

16

Visibility Graph

● A visibility graph is a graph such that
● Nodes: s, g, or obstacle vertices
● Edges: An edge exists between nodes u and v if

the line segment between u and v is an
obstacle edges or it does not intersect the
obstacles

g

s

17

Visibility Graph

● A visibility graph
● Introduced in the late 60s
● Can produce shortest paths in 2-D

configuration spaces

g

s

18

Simple Algorithm
● Input: s, q, polygonal obstacles
● Output: visibility graph G

1: for every pair of nodes u, v
2: if segment (u, v) is an obstacle edge then
3: insert edge (u, v) into G;
4: else
5: for every obstacle edge e
6: if segment (u, v) intersects e
7: go to (1);
8: insert edge (u, v) into G;
9: Search a path with G using A*

19

Computation Efficiency
1: for every pair of nodes u, v
2: if segment (u, v) is an obstacle edge then
3: insert edge (u, v) into G;
4: else
5: for every obstacle edge e
6: if segment (u, v) intersects e
7: go to (1);
8: insert edge (u, v) into G;

● Simple algorithm: O(n3) time
●More efficient algorithms

● Rotational sweep O(n2 log n) time, etc.
●O(n2) space

O(n2)
O(n)

O(n)

20

Continuous representation
(configuration space formulation)

Discretization
(random sampling, processing critical geometric events)

Graph searching
(blind, best-first, A*)

Motion-Planning Framework

21

Graph Search Algorithms
● Breadth, depth-first, best-first
●Dijkstra’s algorithm
● A*

22

23

24

25

Traverse the graph by using the queue,
resulting in the level-by-level traversal

26

Dijkstra’s Shortest Path
Algorithm
●Given a (non-negative) weighted graph,

two vertices, s and g:
● Find a path of minimum total weight between

them
● Also, find minimum paths to other vertices
● Has O (|V| lg|V| + |E|), where V & E refer

vertices & edges

27

Dijkstra’s Shortest Path
Algorithm
● Set S

● Contains vertices whose final shortest-path cost has
been determined

● DIJKSTRA (G, s):
Input: G is an input graph, s is the source
1. Initialize-Single-Source (G, s)
2. S  empty
3. Queue  Vertices of G
4. While Queue is not empty
5. Do u  min-cost from Queue
6. S  union of S and {u}
7. for each vertex v in Adj [u]
8. do RELAX (u, v)

28

Dijkstra’s Shortest Path
Algorithm

Black vertices are in the set.
White vertices are in the queue.
Shaded one is chosen for relaxation.

Compute optimal cost-to-come at each iteration

29

A* Search Algorithm
● An extension of Dijkstra’s algorithm based

on a heuristic estimate
● Conservatively estimate the cost-to-go from a

vertex to the goal
● The estimate should not be greater than the

optimal cost-to-go
● Sort vertices based on “cost-to-come + the

estimated cost-to-go”
● Can find optimal solutions

with fewer steps

free space

s

g

30

Best-First Search
● Pick a next node based on an estimate of

the optimal cost-to-go cost
● Greedily finds solutions that look good
● Solutions may not be optimal
● Can find solutions quite fast, but can be also

very slow

31

32

Computational Efficiency
●Running time O(n3)

● Compute the visibility graph
● Search the graph

● Space O(n2)

● Can we do better?
● Lead to classical approaches such as roadmap

33

Class Objectives were:
●Motion planning framework

● Representations of robots and space
● Discretization into a graph
● Search methods

34

Homework
● Browse 2

ICRA/IROS/RSS/WAFR/TRO/IJRR papers
● Prepare two summaries and submit at the

beginning of every Tue. class, or
● Submit it online before the Tue. Class

● Example of a summary (just a paragraph)
Title: XXX XXXX XXXX
Conf./Journal Name: ICRA, 2015
Summary: this paper is about accelerating the
performance of collision detection. To achieve its goal,
they design a new technique for reordering nodes,
since by doing so, they can improve the coherence
and thus improve the overall performance.

35

Homework for Every Class
●Go over the next lecture slides
● Come up with one question on what we

have discussed today and submit at the end
of the class
● 1 for typical questions
● 2 for questions with thoughts or that surprised

me

●Write a question more than 4 times on
Sep./Oct.

36

Next Time….
● Classic path planning algorithms

