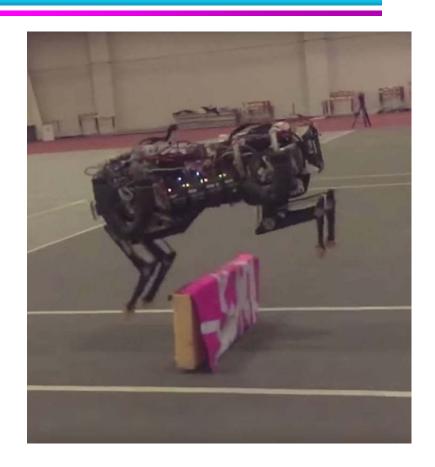
CS686: High-level Motion/Path Planning Applications

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/MPA



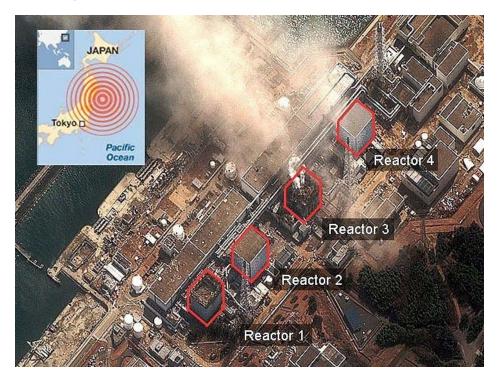
Class Objectives

- Discuss my general research view on motion planning
- Discuss related applications

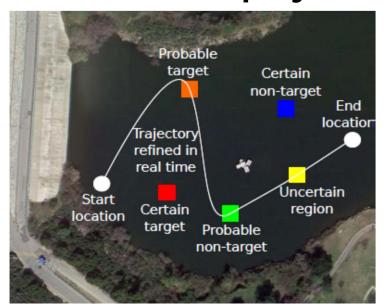
- Many robots are available
 - Different sensors and controls
- Basic controls are developed with such robots
 - Primitive motions are developed together
- Therefore, motion/path planning are widely researched

- General motion planning tools
 - Primitive controls are available at HW vendors
 - How can we design a standard MP library working with those different robots?
 - For example, OpenGL for the robotics field; vendors support OpenGL, and programmer uses OpenGL for their applications

- High-level motion strategy are necessary
 - Optimal paths given constraints
 - Handling multiple robots for certain tasks
 - E.g., how can we efficiently assemble and disassemble the Boeing plane?

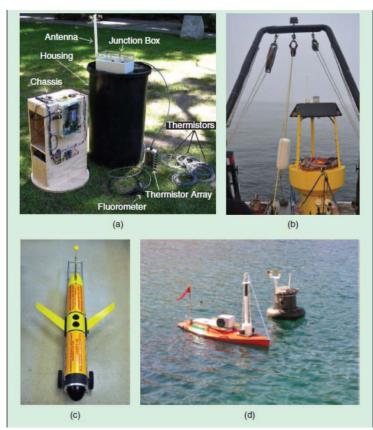


- High-level motion strategy are necessary
 - Optimal paths given constraints
 - Handling multiple robots for certain tasks
 - E.g., "Clean them!"


- High-level motion strategy are necessary
 - Optimal paths given constraints
 - Handling multiple robots for certain tasks
 - E.g., dangerous places for human

Task Search and Classification

- Identify and classify a number of initially unknown targets
 - Useful for tedious, dangerous, or impossible for humans (underwater, disaster sites, etc.)
 - How can effectively perform this process during limited deployment time?



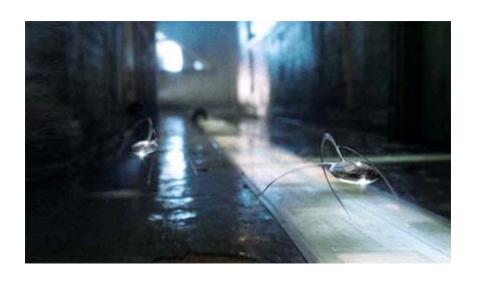
Long-horizon Robotic Search and Classification using Sampling-based Motion Planning Hollinger, et al.

Task Search and Classification

Environment (e.g., ocean) monitoring

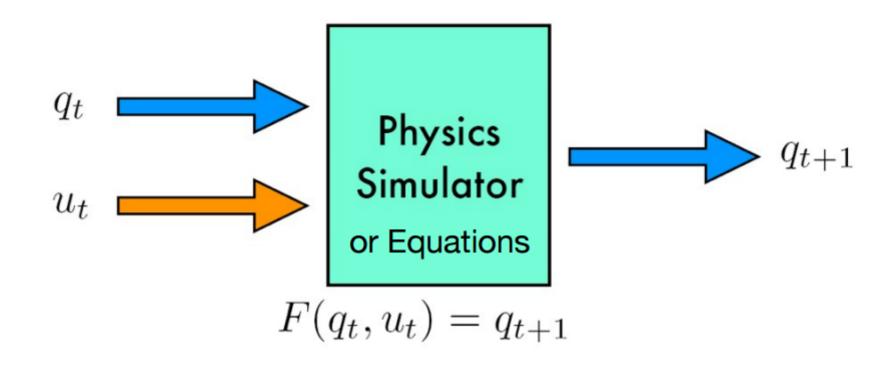
Different marine sensors, Smith et al.

Use robotic sensor networks


 each node can move autonomously or work with others

Marine sampling

Minority Report


Planning with Dynamics

tribuneindia

Physical Systems Planning

Space of controls is defined

KAIST

Physical System Planning

Given

- 1. an initial state $q_0 \in Q$
- 2. a goal set $G \subset Q$

The discrete physical systems planning problem is to compute a sequence $u_0, ..., u_N$ such that:

$$F(q_i,u_i)=q_{i+1}$$

and $q_{N+1} \in G$ is contained in the goal set.

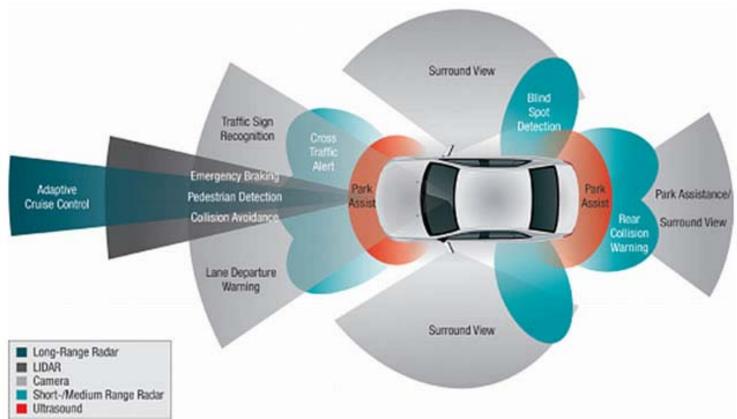
Planning with Dynamics

- Adding dynamics is essential to increase physical realism
- Techniques from control theory can be used to create better paths
- Still fairly open

Case Study: Self-Driving Cars

Typical systems of autonomous vehicles: many sensors and ECUs

Sensors



Google images

Plan of Development: Response to Plan

Evolve ADAS (Advanced Driver Assistance Systems) focusing on fast response to autonomous driving (high-level reasoning)

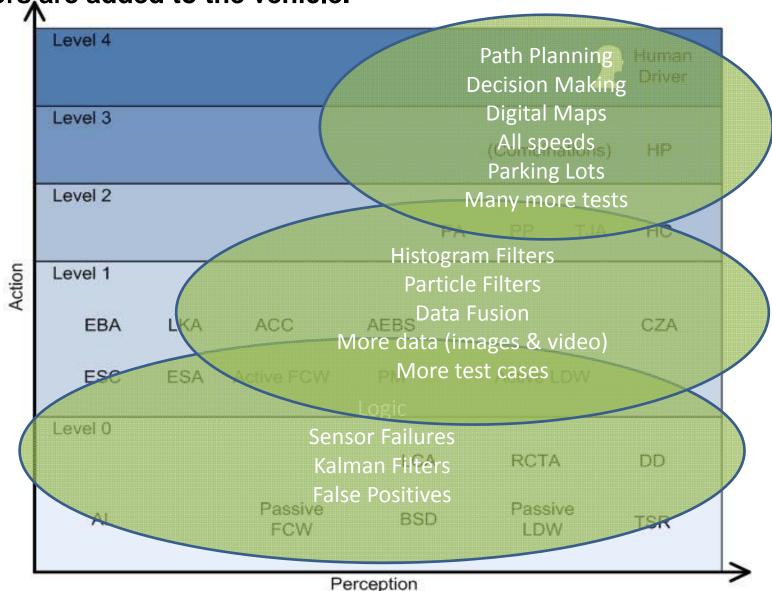
ADAS Sensors

- Need to identify lanes, pedestrians, traffic signs, other nearby cars
- Combine radar for detection and camera for recognition

Technical Issues

- High accuracy
 - 99.99% is not enough for detection and recognition problems (e.g., detecting red signs)
- Weather challenges

Bob Donaldson / Post-Gazette


Testing & Certification

Testing becomes exponentially more complex as more sensors and

actuators are added to the vehicle.

National

Advanced **Driving Simulator**

Automated Planning w/ Motion Planning

Assemble the chair w/ or even w/o the instruction
 ASSEMBLY INSTRUCTIONS OA1013

(1)CASTER (2	2)BASE	(3)GASLIFT	(4)SEAT	_		
(5)ARMREST (6)	X1 S)BACK	X1 (7)MECHANISM X1	0	(3) (3) (2) (1)	(6)	(8)-1 (4) (5) (6)
(8)1. □□□□ ×r (8x20)MM 2. □□ ×2 3. ⊙ ×7 4. ○ ×7 5. ✓ x1				D		

Class Objectives were:

- Discussed my general research view on motion planning
- Discussed related applications

Next Time..

RRT techniques

Homework for Every Class

- Come up with one question on what we have discussed today and submit at the end of the class
 - Write a question more than 4 times on Sep./Oct.
 - 1 for typical questions
 - 2 for questions with thoughts or that surprised me
- Go over the next lecture slides
- Browse 2 ICRA/IROS/RSS/WAFR/TRO/IJRR papers
 - Prepare two summaries and submit at the beginning of every Tue. class, or
 - Submit it online before the Tue. Class

