Probabilistic Roadmaps

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/MPA

Announcements

- Mid-term exam
 - Closed book
 - 4:00pm on Oct-20 at the class room

Reminder

- Declare the team at the noah board by Oct-
- Browse recent papers (2012 ~ 2015)
 - You need to present two papers at the class
- Declare your chosen 2 papers at the board by Oct-12 (Mon.)
 - First come, first served
 - Paper title, conf. name, publication year
- Decide our talk schedule on Oct.-13 (Tue.)
- Student presentations will start right after the mid-term exam
 - 3 talks per each class; 20 min for each talk

Project Guidelines: Project Topics

- Any topics related to the course theme are okay
 - You can find topics by browsing recent papers
- You can bring your own research to the class, only if it is related to the course theme
 - You need to get a permission from me for this

Expectations

- Mid-term project presentation
 - Introduce problems and explain why it is important
 - Give an overall idea on the related work
 - Explain what problems those existing techniques have
 - (Optional) explain how you can address those problems
 - Explain roles of each member

Expectations

- Final-term project presentation
 - Cover all the materials that you talked for your mid-term project
 - Present your ideas that can address problems of those state-of-the-art techniques
 - Give your qualitatively (or intuitive) reasons how your ideas address them
 - Also, explain expected benefits and drawbacks of your approach
 - (Optional) backup your claims with quantitative results collected by some implementations
 - Explain roles of each members

A few more comments

- Start to implement a paper, if you don't have any clear ideas
 - While you implement it, you may get ideas about improving it

Class Objectives

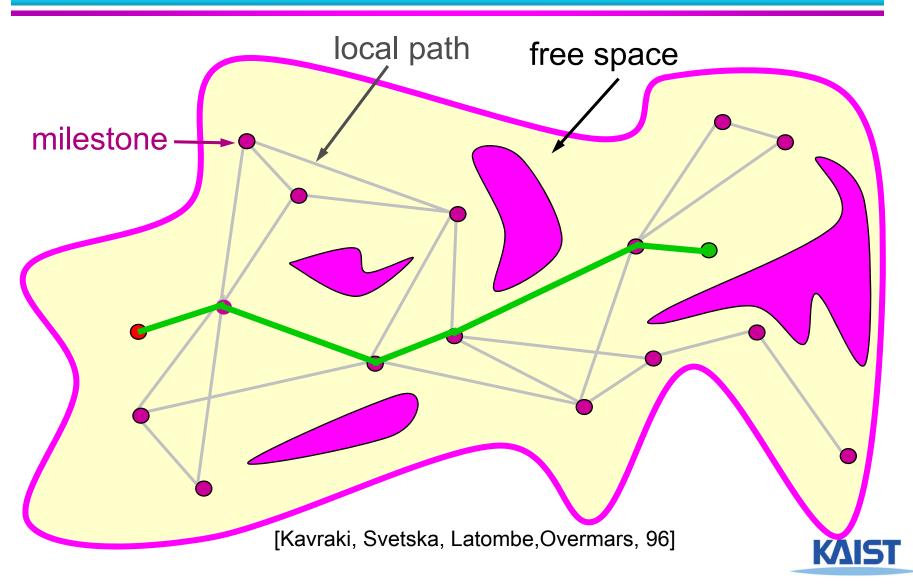
- Understand probabilistic roadmap (PRM) approaches
 - Multi-query PRMs
 - Single-query PRMs

Difficulty with Classic Approaches

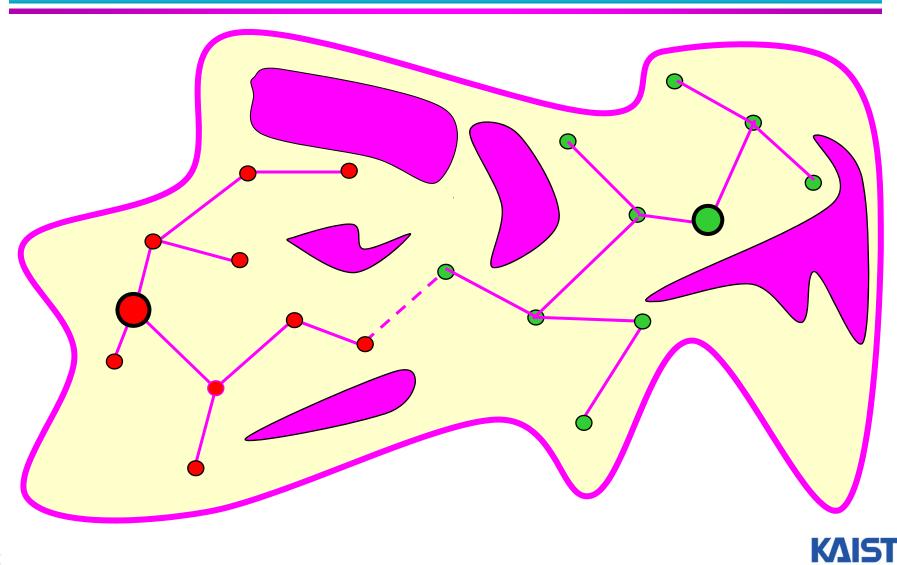
- Running time increases exponentially with the dimension of the configuration space
 - For a *d*-dimension grid with 10 grid points on each dimension, how many grid cells are there?

10^d

 Several variants of the path planning problem have been proven to be PSPACEhard



Completeness


- Complete algorithm → Slow
 - A complete algorithm finds a path if one exists and reports no otherwise
 - Example: Canny's roadmap method
- Heuristic algorithm → Unreliable
 - Example: potential field
- Probabilistic completeness
 - Intuition: If there is a solution path, the algorithm will find it with high probability

Probabilistic Roadmap (PRM): multiple queries

Probabilistic Roadmap (PRM): single query


Classic multiple-query PRM

 Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces, L. Kavraki et al., 1996.

Assumptions

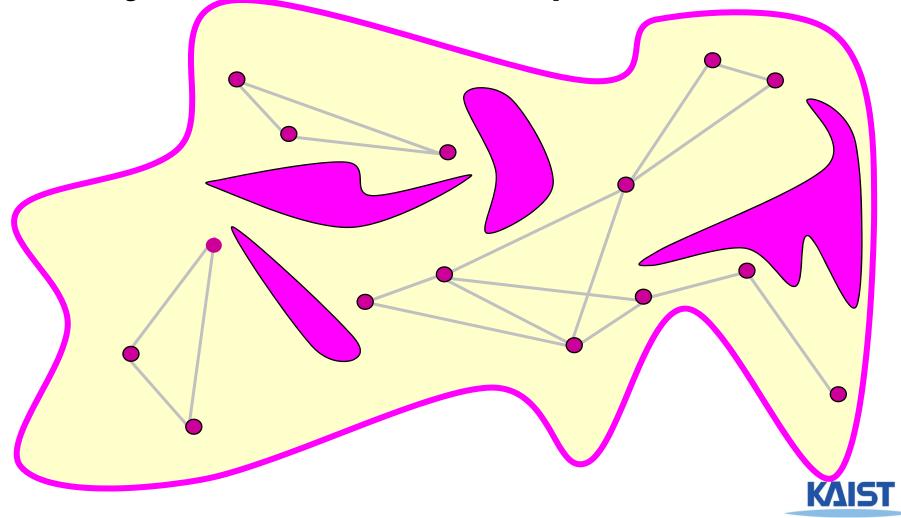
- Static obstacles
- Many queries to be processed in the same environment
- Examples
 - Navigation in static virtual environments
 - Robot manipulator arm in a workcell

Overview

- Precomputation: roadmap construction
 - Uniform sampling
 - Resampling (expansion)
- Query processing

Uniform sampling

```
geometry of the moving object & obstacles
Output: roadmap G = (V, E)
1: V \leftarrow \emptyset and E \leftarrow \emptyset.
2:
    repeat
    q \leftarrow a configuration sampled uniformly at random from C
3:
       if CLEAR(q)then
4:
5:
         Add a to V.
         N_q \leftarrow a set of nodes in V that are close to q.
6:
         for each q' \in N_q, in order of increasing d(q, q')
6:
           if LINK(q',q)then
7:
8:
             Add an edge between q and q' to E.
```



Some terminology

- The graph G is called a probabilistic roadmap.
- The nodes in G are called milestones.

Difficulty

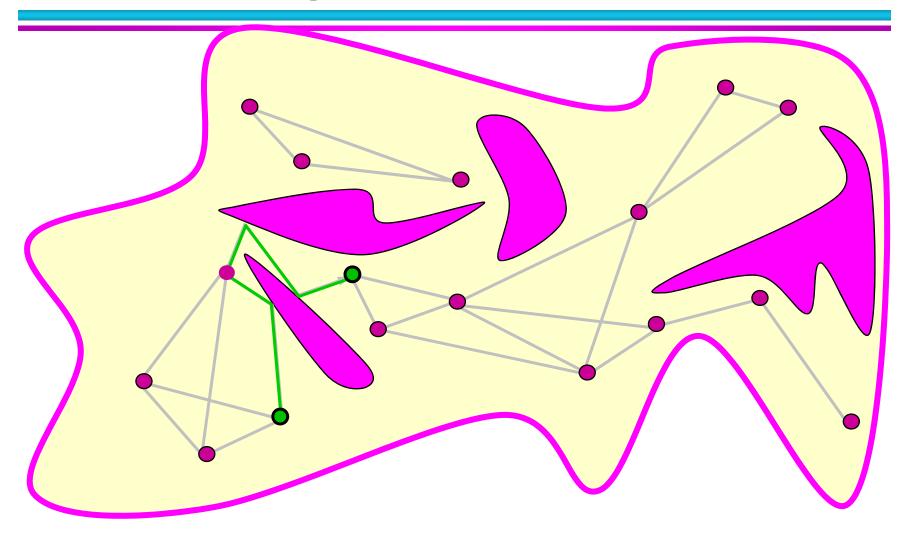
Many small connected components

Resampling (expansion)

Failure rate

$$r(q) = \frac{\text{\#. failed LINK}}{\text{\#. LINK}}$$

Normalized weight


$$w(q) = \frac{r(q)}{\sum_{p} r(p)}$$

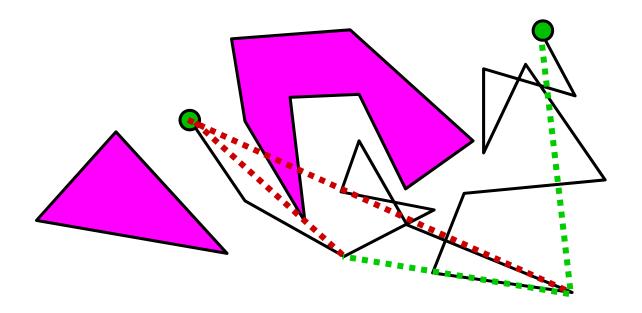
Resampling probability

$$Pr(q) = w(q)$$

Resampling (expansion)

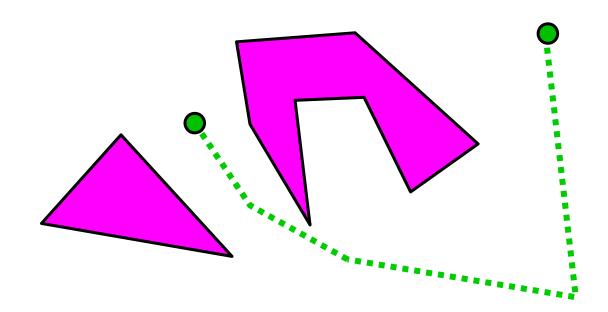
Query processing

- ullet Connect $q_{
 m init}$ and $q_{
 m goal}$ to the roadmap
- Start at $q_{\rm init}$ and $q_{\rm goal}$, perform a random walk, and try to connect with one of the milestones nearby
- Try multiple times



Error

- If a path is returned, the answer is always correct.
- If no path is found, the answer may or may not be correct. We hope it is correct with high probability.



Smoothing the path

Smoothing the path

Summary

- What probability distribution should be used for sampling milestones?
- How should milestones be connected?
- A path generated by a randomized algorithm is usually jerky. How can a path be smoothed?

Sing-Query PRM

• Path Planning Using Lazy PRM, R. Bohlin & L. Kavraki, 2000.

Precomputation: roadmap construction

Nodes

- Randomly chosen configurations, which may or may not be collision-free
- No call to CLEAR

Edges

- an edge between two nodes if the corresponding configurations are close according to a suitable metric
- no call to LINK

Query processing: overview

- 1. Find a shortest path in the roadmap
- 2. Check whether the nodes and edges in the path are in collision-free regions.
- 3. If yes, then done. Otherwise, remove the nodes or edges in violation. Go to (1).

We either find a collision-free path, or exhaust all paths in the roadmap and declare failure.

Class Objectives were:

- Understand probabilistic roadmap (PRM) approaches
 - Multi-query PRMs
 - Single-query PRMs

Next Time...

 RRT techniques and their recent advancements

Homework for Every Class

- Come up with one question on what we have discussed today and submit at the end of the class
 - Write a question more than 4 times on Sep./Oct.
 - 1 for typical questions
 - 2 for questions with thoughts or that surprised me
- Go over the next lecture slides
- Browse 2 ICRA/IROS/RSS/WAFR/TRO/IJRR papers
 - Prepare two summaries and submit at the beginning of every Tue. class, or
 - Submit it online before the Tue. Class

