CS686: Classic Motion Planning Methods

Sung-Eui Yoon (윤성의)

Course URL: http://sgvr.kaist.ac.kr/~sungeui/MPA

Class Objectives

- Classic motion planning approaches
 - Roadmap
 - Cell decomposition
 - Potential field
 - Ch. 3 of my draft:

https://sgvr.kaist.ac.kr/~sungeui/mp/

- Last time
 - Configuration space, i.e., C-space
 - Discretization, e.g., visibility graph
 - Best-first search and A* search

Questions

- I'm still in Italy, my home country, which is seven hours behind KST
 - Do that homework in your time zone

- Can you send me some background publications in this field?
 - Go over my draft, which I'm trying to improve it now.

Classic Path Planning Approaches

Roadmap

 Represent the connectivity of the free space by a network of 1-D curves

Cell decomposition

 Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells

Potential field

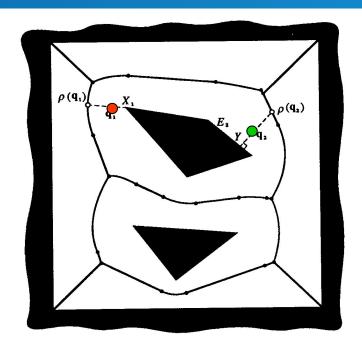
 Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Classic Path Planning Approaches

Roadmap

 Represent the connectivity of the free space by a network of 1-D curves

Cell decomposition

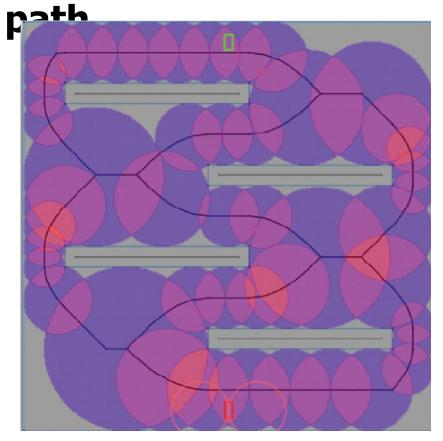

 Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells

Potential field

 Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Roadmap Methods

- Visibility Graph
 - Shakey project, SRI [Nilsson 69]
- Voronoi diagram
 - Introduced by computational geometry researchers
 - Generate paths that maximize clearance
 - O(n log n) time and O(n) space for 2D points
 - GPU computation is


Other Roadmap Methods

- Visibility graph
- Voronoi diagram
- Silhouette
 - First complete general method that applies to spaces of any dimension and is singly exponential in # of dimensions [Canny, 87]; e.g., $O\left(n^{2^{f(k)}}\right) \rightarrow O(n^k)$
- Probabilistic roadmaps

Cloud RRT* [Kim et al., ICRA]

 Use Voronoi diagram to bias sampling for achieving better convergence to optimal

https://www.youtube.com/wat ch?v=NSuDtd1amC4

Classic Path Planning Approaches

Roadmap

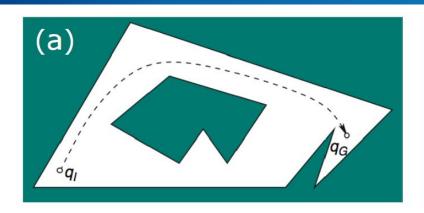
 Represent the connectivity of the free space by a network of 1-D curves

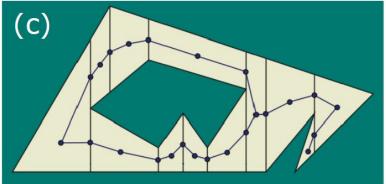
Cell decomposition

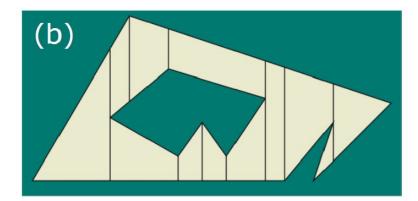
 Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells

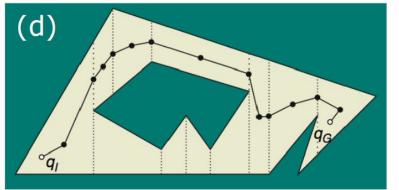
Potential field

 Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent


Cell-Decomposition Methods


- Two classes of methods:
 - Exact and approximate cell decompositions


- Exact cell decomposition
 - The free space F is represented by a collection of non-overlapping cells whose union is exactly
 - Example: trapezoidal decomposition



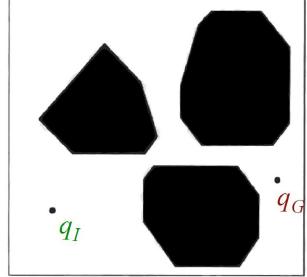
Trapezoidal Decomposition

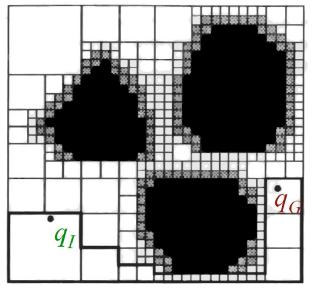
Credit: Arras

Criticality-based (e.g., vertices) decomposition

□ Planar sweep □ O(n log n) time, O(n) space

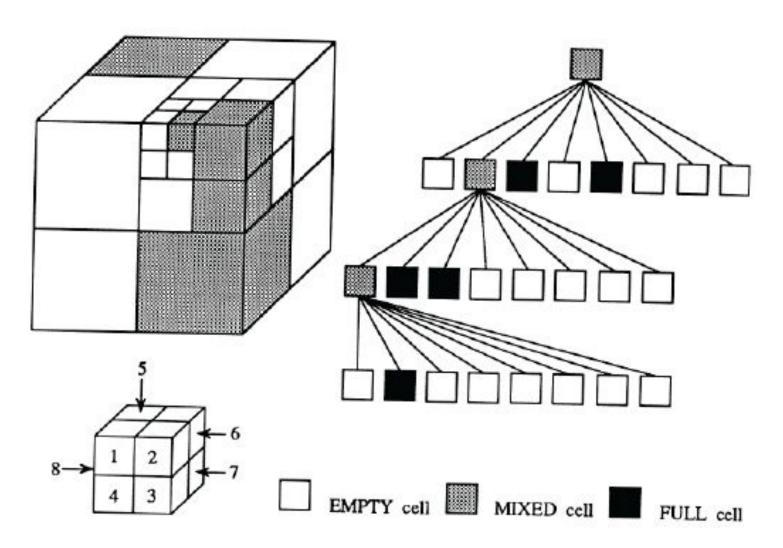
Cell-Decomposition Methods


- Two classes of methods:
 - Exact and approximate cell decompositions


- Exact cell decomposition
- Approximate cell decomposition
 - The free space F is represented by a collection of non-overlapping cells whose union is contained in F
 - Cells usually have simple, regular shapes (e.g., rectangles and squares)
 - Facilitates hierarchical space decomposition KAIST

Quadtree Decomposition

- 1. Decompose the free space F into cells
- 2. Search for a sequence of mixed or free cells that connect that initial and goal
- Further decompose the mixed
- 4. Repeat 2 and 3 until a sequence of free


cel

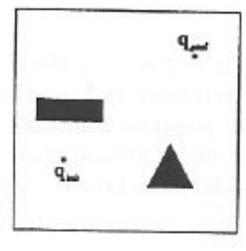
Octree decomposition

Classic Path Planning Approaches

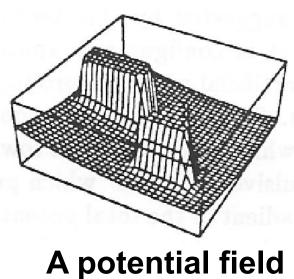
Roadmap

 Represent the connectivity of the free space by a network of 1-D curves

Cell decomposition

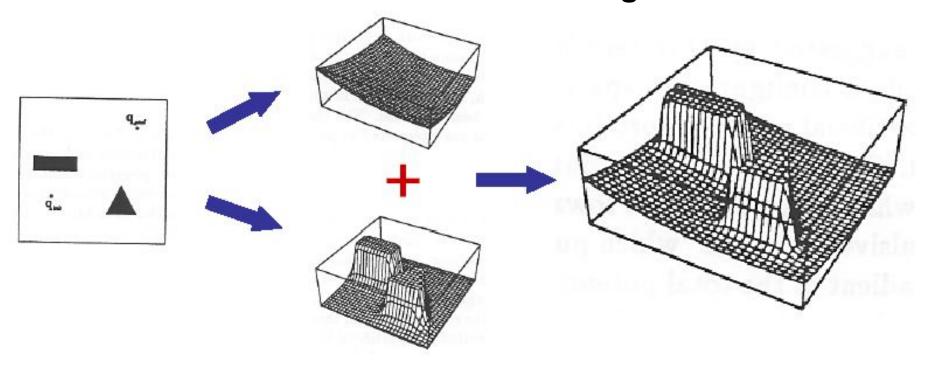

 Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells

Potential field

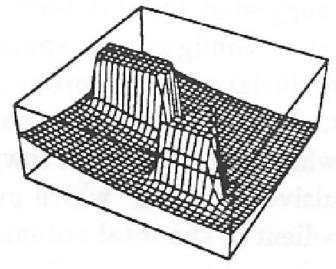

 Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Potential Field Methods

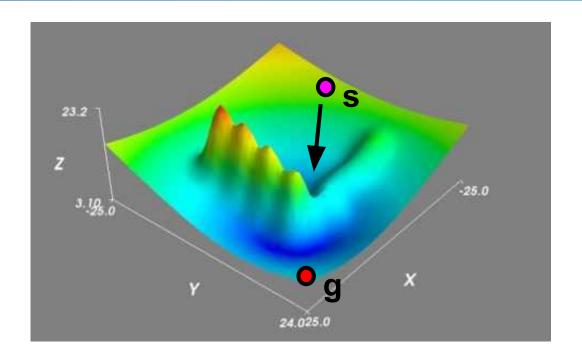
- Initially proposed for real-time collision avoidance [Khatib, 86]
 - Use a scalar function, potential field, over the free space
 - Compute a force proportional to the negated tential field


Workspace

Attractive and Repulsive fields


Attractive field towards the goal

Repulsive field away from obstacles


Ideal Potential Field

- The ideal one
 - Has the global minimum at the goal
 - Has no local minima
 - **Grows to infinity near obstacles**
 - Is smooth

Local Minima

Svenstrup

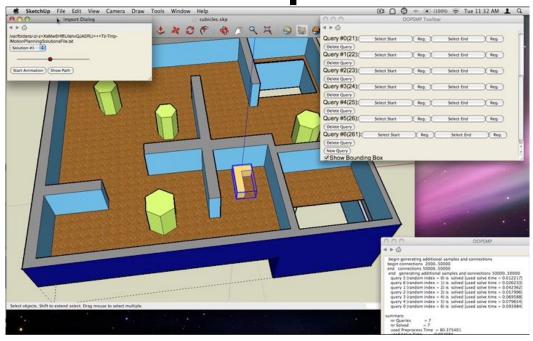
- What can we do?
 - Escape from local minima by taking random walks

Sketch of Algorithm

- Place a regular grid G over the configuration space
- Compute the potential field over G
- Search G using a best-first algorithm with potential field as the heuristic function

Completeness

- A complete motion planner always returns a solution when one exists and indicates that no such solution exists otherwise
 - Is the visibility algorithm complete? Yes
 - How about the exact cell decomposition algorithm and the potential field algorithm?



Homework: PA1

- Install <u>Open Motion Planning Library</u> (<u>OMPL</u>)
- Create a scene and a robot

Find a collision-free path and visualize the

path

Homework

- Deadline: 11:59pm, Sep.-24
- Submit at KLMS:
 - An image that shows a scene with a robot with a computed path

Conf. Deadline

ICRA: Oct.-15 2021

RSS: Jan(?), IROS: March

Class Objectives

- Classic motion planning approaches
 - Roadmap
 - Cell decomposition
 - Potential field
 - Ch. 3 of my draft:

https://sgvr.kaist.ac.kr/~sungeui/mp/

Homework

- Browse 2 ICRA/IROS/RSS/CoRL/TRO/IJRR papers
 - Submit it online before the Tue. Class
 - https://forms.gle/2jdXkgYu5snyAb3s8
- Example of a summary (just a paragraph)

Title: XXX XXXX XXXX

Conf./Journal Name: ICRA, 2020

Summary: this paper is about accelerating the performance of collision detection. To achieve its goal, they design a new technique for reordering nodes, since by doing so, they can improve the coherence and thus improve the overall performance.

Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today and submit at the end of the class

- Write a question two times before the mid-term exam
 - https://forms.gle/R2ZcS9pZ9me9RzmKA

Next Time....

Configuration spaces

