
CS686:
Proximity Queries

Sung-Eui Yoon
(윤성의)

Course URL:
http://sgvr.kaist.ac.kr/~sungeui/MPA

2

Presentation Guideline:
Expectations
● Good summary, not full detail, of the paper

● Just 15 min for the talk + quiz
● Talk about motivations of the work
● Give a broad background on the related work
● Explain main idea and results of the paper
● Discuss strengths and weaknesses of the

method

● Upload your video, slide and quiz link
(google form) to KLMS board before the
class time

3

High-Level Ideas
● Deliver most important ideas and results

● Do not talk about minor details
● Give enough background instead

● Spend most time to figure out the most
important things and prepare good slides
for them
● If possible, re-use existing slides/videos with

acknowledgement

4

Overall Structure
● Prepare an overview slide

● Talk about most important things and connect
them well

5

Be Honest
● Do not skip important ideas that you don’t

know
● Explain as much as you know and mention that

you don’t understand some parts

● If you get questions you don’t know good
answers, just say it

● In the end, you need to explain them
before the semester ends through KLMS

6

Result Presentation
● Give full experiment settings and present

data with the related information

● After showing the data, give a message
that we can pull of the data

● Show images/videos, if there are

7

Prepare a Quiz
● Give two simple questions to draw

attentions
● Ask a keyword
● Simple true or false questions
● Multiple choice questions

● Use a google form (like the one that I
created for taking questions) to receive
answers from students
● Each student should answer them within 24

hours to the end of the class time
● Grade them in the scale of 0 and 10, and

send the score to TA

8

Audience feedback form
https://forms.gle/tDCDNiJWXNWVQBC56

Date:
Talk title:
Speaker:

A. Was the talk well organized and well prepared?
5: Excellent 4: good 3: okay 2: less than average 1: poor

B. Was the talk comprehensible? How well were important concepts covered?
5: Excellent 4: good 3: okay 2: less than average 1: poor

Any comments to the speaker

9

Class Objectives (Ch. 4)
● Understand collision detection and distance

computation
● Bounding volume hierarchies

● Handle point clouds

● Last time:
● C-obstacle construction using Minkowski sum
● Homotopy

10

Two geometric primitives in configuration
space

● CLEAR(q)
Is configuration q collision
free or not?

● LINK(q, q’)
Is the straight-line path
between q and q’
collision-free?

11

Problem
● Input: two objects A and B
● Output:

● Distance computation: compute the distance
(in the workspace) between A and B

● Collision detection: determine whether A and B
collide or not

OR

12

Collision detection vs. distance
computation
● The distance between

two objects (in the
workspace) is the
distance between the
two closest points on
the respective objects

● Collision if and only if
distance = 0

13

Collision detection does not allow us to
check for free path rigorously

F

14

Collision detection does not allow us to
check for free path rigorously

F

Discrete collision checks

15

Use distance to check for free path
rigorously

F

16

Use distance to check for free path
rigorously

Link(q0, q1)

1: if q0∈N(q1) or q1∈N(q0)
2: then

3: return TRUE.

4: else

5: q’ = (q0+q1)/2.

6: if q’ is in collision

7: then

8: return FALSE

9: else

10: return Link(q0, q’) && Link(q1,q’).

17

Applications
● Robotics

● Collision avoidance
● Path planning

● Graphics & virtual environment simulation

● Haptics
● Collision detection
● Force proportional to distance

18

Collision Detection
● Discrete collision detection
● Continuous collision detection

19

Discrete collision detection (DCD)

Discrete VS Continuous

Time step (i-1)
Time step (i)

From Duksu’s slides

20

Discrete collision detection (DCD)

Discrete VS Continuous

Time step (i-1)
Time step (i)

?

21

Continuous collision detection(CCD)

Discrete VS Continuous

Time step (i-1)
Time step (i)

22

Discrete VS Continuous

Continuous CD Discrete CD

Accuracy Accurate May miss some collisions

Computation time Slow Fast

23

Collision Detection
● Discrete collision detection
● Continuous collision detection

● These are typically accelerated by bounding
volume hierarchices (BVHs)

24

Bounding Volumes

●Sphere [Whitted80]
● Cheap to compute
● Cheap test
● Potentially very bad fit

●Axis-aligned bounding box
● Very cheap to compute
● Cheap test
● Tighter than sphere

25

Bounding Volumes
● Oriented bounding box

● Fairly cheap to compute
● Fairly cheap test
● Generally fairly tight

● Slabs / K-dops
● More expensive

to compute
● Fairly cheap test
● Can be tighter than OBB

26

Bounding Volume Hierarchies
(BVHs)
● Organize bounding volumes recursively as

a tree
● Construct BVHs in a top-down manner

● Use median-based partitioning or other
advanced partitioning methods

A BVH

27

Collision Detection with BVHs

A
B C

1

X
Y Z

BV overlap test (A,X)
BV overlap test(B,Y), (B,Z), (C,Y), (C,Z)

Primitive collision test(1,5), (1,6), (2,5), (2,6)

(A,X)

(B,Y)

(1,5)
Triangle 1 and 5 have a collision!

From Duksu’s slides

28

Test-Of-Time 2006 Award

RT-DEFORM: Interactive Ray Tracing of Dynamic
Scenes using BVHs
Christian Lauterbach, Sung-eui Yoon, David Tuft,
Dinesh Manocha

IEEE Interactive Ray Tracing, 2006

29

Computing distances
● Depth-first search on the binary tree

● Keep an updated minimum distance
● Depth-first  more pruning in search

● Prune search on branches that won’t
reduce minimum distance

● Once leaf node is reached, examine
underlying convex polygon for exact
distance

30

Simple example
● Set initial distance value to infinity

Start at the root node.
20 < infinity, so continue

searching

31

Simple example
● Set initial distance value to infinity

● Choose the nearest of the two child
spheres to search first

Start at the root node.
20 < infinity, so continue

searching.

40 < infinity, so continue
searching recursively.

32

Simple example
● Eventually reach a leaf node

40 < infinity; examine the
polygon to which the leaf

node is attached.

33

Simple example
● Eventually reach a leaf node

Call algorithm to find exact
distance to the polygon.
Replace infinity with new

minimum distance (42 in this
case).

40 < infinity; examine the
polygon to which the leaf

node is attached.

34

Simple example
● Continue depth-first search

45 > 42; don’t search this
branch any further

35

Simple example
● Continue depth-first search

60 > 42; we can prune this
half of our tree from the

search

45 > 42; don’t search this
branch any further

36

Running time: build the tree
● Roughly balanced binary tree
● Expected time O(n log n)
● Tree is built only once and can often be

pre-computed.

37

Running time: search the tree
● Full search

● O(n) time to traverse the tree, where n = number
of leaf nodes

● Plus time to compute distance to each polygon
in the underlying model

● The algorithm allows a pruned search:
● Worst case as above; occurs when objects are

close together
● Best case: O(log n) + a single polygon

calculation
● Average case ranges between the two

38

3D Sensor & Point Cloud Data
● 3D sensor generates excessive amount

of points with some noise periodically
● 300K points / 30FPS with Kinect

Point Cloud Data3D Sensor Model

3D Point

Modified from YongSun’s slides

39

Sensor-based Path Planning
● Navigation using 3D depth sensor

Video

40

General Flow of Using Point
Clouds

Applications (path planning)

Point cloud Maps (octree or grid)

Update

41

Map Representations

3D Grid Map Octree Data Structure

42

Occupancy Map Representation
● OctoMap [Wurm et al., ICRA, 2010]

● Encode an occupancy probability of cell 𝑛 given
measurement 𝑧ଵ:௧

𝟏:𝒕 𝟏:𝒕ି𝟏 𝒕
Occupancy probability of the

cell 𝑛 at time step 𝑡 − 1
New sensor measurement 𝑧௧
to be updated at time step 𝑡𝐿 𝑛 𝑧௧) = ቊ 𝑙௢௖௖ 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑠𝑡𝑎𝑡𝑒 𝑙௙௥௘௘ 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒

43

Update Method
● Traverse and update cells

● Bresenham algorithm [Amanatides et al.,
Eurographics, 1987]

Updated cell to occupied
state𝐿 𝑛 𝑧௧) = 𝑙௢௖௖ = 1.0
Updated cell to free state𝐿 𝑛 𝑧௧) = 𝑙௙௥௘௘ = −0.5

Time: ௔௖௖௘௦௦

𝑡௔௖௖௘௦௦: time to update a
cell

44

Update Method
● Traverse and update cells

● Bresenham algorithm [Amanatides et al.,
Eurographics, 1987]

● Can be very slow, with many points
Time: ௔௖௖௘௦௦ - Visit the same cells

multiple times for
multiple rays

𝑡௔௖௖௘௦௦: time to update a
cell

45

Super Rays [Kwon et al., ICRA16]
● Benefits of our approach

● Faster performance with the same representation
accuracy

● Codes are available
Time: 𝒈𝒆𝒏 + 5 ௔௖௖௘௦௦Time: ௔௖௖௘௦௦

State-of-the-art method Ours

46

Learning based Approaches
● Unobserved regions due to occlusion and

sensor errors

● Estimate status of such regions based on
learning techniques
● [Kwon et al.,

IROS 20]
https://sgvr.kaist.ac.kr/~yskwon/papers/
iros20-akimap/

47

Class Objectives were:
● Understand collision detection and distance

computation
● Bounding volume hierarchies

● Handle point clouds
● Ch. 4 of my book

48

Next Time…
● Probabilistic Roadmaps

49

Homework
● Submit summaries of 2

ICRA/IROS/RSS/CoRL/TRO/IJRR papers
● Go over the next lecture slides
● Come up with two questions before the

mid-term exam

