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Presentation Guideline: 
Expectations
● Good summary, not full detail, of the paper

● Just 15 min for the talk + quiz
● Talk about motivations of the work
● Give a broad background on the related work
● Explain main idea and results of the paper
● Discuss strengths and weaknesses of the 

method

● Upload your video, slide and quiz link 
(google form) to KLMS board before the 
class time
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High-Level Ideas
● Deliver most important ideas and results

● Do not talk about minor details
● Give enough background instead

● Spend most time to figure out the most 
important things and prepare good slides 
for them
● If possible, re-use existing slides/videos with 

acknowledgement
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Overall Structure
● Prepare an overview slide

● Talk about most important things and connect 
them well
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Be Honest
● Do not skip important ideas that you don’t 

know
● Explain as much as you know and mention that 

you don’t understand some parts

● If you get questions you don’t know good 
answers, just say it

● In the end, you need to explain them 
before the semester ends through KLMS



6

Result Presentation
● Give full experiment settings and present 

data with the related information

● After showing the data, give a message 
that we can pull of the data

● Show images/videos, if there are
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Prepare a Quiz
● Give two simple questions to draw 

attentions
● Ask a keyword
● Simple true or false questions
● Multiple choice questions

● Use a google form (like the one that I 
created for taking questions) to receive 
answers from students
● Each student should answer them within 24 

hours to the end of the class time
● Grade them in the scale of 0 and 10, and 

send the score to TA
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Audience feedback form
https://forms.gle/tDCDNiJWXNWVQBC56
-----------------------
Date:
Talk title:
Speaker:

A. Was the talk well organized and well prepared?
5: Excellent 4: good 3: okay 2: less than average 1: poor

B. Was the talk comprehensible? How well were important concepts covered?
5: Excellent 4: good 3: okay 2: less than average 1: poor

Any comments to the speaker

-----------------------
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Class Objectives (Ch. 4)
● Understand collision detection and distance 

computation
● Bounding volume hierarchies

● Handle point clouds

● Last time:
● C-obstacle construction using Minkowski sum
● Homotopy
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Two geometric primitives in configuration 
space

● CLEAR(q)
Is configuration q collision 
free or not?

● LINK(q, q’) 
Is the straight-line path 
between q and q’ 
collision-free?
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Problem
● Input: two objects A and B
● Output:

● Distance computation: compute the distance 
(in the workspace) between A and B

● Collision detection: determine whether A and B
collide or not

OR
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Collision detection vs. distance 
computation
● The distance between 

two objects (in the 
workspace) is the 
distance between the  
two closest points on 
the respective objects

● Collision if and only if 
distance = 0
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Collision detection does not allow us to 
check for free path rigorously

F
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Collision detection does not allow us to 
check for free path rigorously

F

Discrete collision checks
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Use distance to check for free path 
rigorously 

F
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Use distance to check for free path 
rigorously

Link(q0, q1)

1: if q0∈N(q1) or q1∈N(q0)
2: then 

3:   return TRUE.

4: else

5:   q’ = (q0+q1)/2.

6:   if q’ is in collision

7:   then

8:     return FALSE    

9:   else

10:    return Link(q0, q’) && Link(q1,q’).
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Applications
● Robotics

● Collision avoidance
● Path planning

● Graphics & virtual environment simulation

● Haptics
● Collision detection
● Force proportional to distance
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Collision Detection
● Discrete collision detection
● Continuous collision detection
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Discrete collision detection (DCD)

Discrete VS Continuous

Time step (i-1)
Time step (i)

From Duksu’s slides
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Discrete collision detection (DCD)

Discrete VS Continuous

Time step (i-1)
Time step (i)

?
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Continuous collision detection(CCD)

Discrete VS Continuous

Time step (i-1)
Time step (i)
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Discrete VS Continuous

Continuous CD Discrete CD

Accuracy Accurate May miss some collisions

Computation time Slow Fast
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Collision Detection
● Discrete collision detection
● Continuous collision detection

● These are typically accelerated by bounding 
volume hierarchices (BVHs)
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Bounding Volumes

●Sphere [Whitted80]
● Cheap to compute
● Cheap test
● Potentially very bad fit

●Axis-aligned bounding box
● Very cheap to compute
● Cheap test
● Tighter than sphere
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Bounding Volumes
● Oriented bounding box

● Fairly cheap to compute
● Fairly cheap test
● Generally fairly tight

● Slabs / K-dops
● More expensive

to compute
● Fairly cheap test
● Can be tighter than OBB
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Bounding Volume Hierarchies 
(BVHs)
● Organize bounding volumes recursively as 

a tree
● Construct BVHs in a top-down manner

● Use median-based partitioning or other 
advanced partitioning methods

A BVH



27

Collision Detection with BVHs

A
B C

1

X
Y Z

BV overlap test (A,X)
BV overlap test(B,Y), (B,Z), (C,Y), (C,Z)

Primitive collision test(1,5), (1,6), (2,5), (2,6) 

(A,X)

(B,Y)

(1,5)
Triangle 1 and 5 have a collision!

From Duksu’s slides
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Test-Of-Time 2006 Award

RT-DEFORM: Interactive Ray Tracing of Dynamic 
Scenes using BVHs
Christian Lauterbach, Sung-eui Yoon, David Tuft, 
Dinesh Manocha

IEEE Interactive Ray Tracing, 2006
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Computing distances
● Depth-first search on the binary tree

● Keep an updated minimum distance
● Depth-first  more pruning in search

● Prune search on branches that won’t 
reduce minimum distance

● Once leaf node is reached, examine 
underlying convex polygon for exact 
distance
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Simple example
● Set initial distance value to infinity

Start at the root node.  
20 < infinity, so continue 

searching
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Simple example
● Set initial distance value to infinity

● Choose the nearest of the two child 
spheres to search first

Start at the root node.  
20 < infinity, so continue 

searching.

40 < infinity, so continue 
searching recursively.
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Simple example
● Eventually reach a leaf node

40 < infinity; examine the 
polygon to which the leaf 

node is attached.
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Simple example
● Eventually reach a leaf node

Call algorithm to find exact 
distance to the polygon.  
Replace infinity with new 

minimum distance (42 in this 
case).

40 < infinity; examine the 
polygon to which the leaf 

node is attached.



34

Simple example
● Continue depth-first search

45 > 42; don’t search this 
branch any further
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Simple example
● Continue depth-first search

60 > 42; we can prune this 
half of our tree from the 

search

45 > 42; don’t search this 
branch any further
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Running time: build the tree
● Roughly balanced binary tree
● Expected time O(n log n)
● Tree is built only once and can often be 

pre-computed.
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Running time: search the tree
● Full search

● O(n) time to traverse the tree, where n = number 
of leaf nodes

● Plus time to compute distance to each polygon 
in the underlying model

● The algorithm allows a pruned search:
● Worst case as above; occurs when objects are 

close together
● Best case: O(log n) + a single polygon 

calculation
● Average case ranges between the two
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3D Sensor & Point Cloud Data
● 3D sensor generates excessive amount 

of points with some noise periodically
● 300K points / 30FPS with Kinect

Point Cloud Data3D Sensor Model

3D Point

Modified from YongSun’s slides
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Sensor-based Path Planning
● Navigation using 3D depth sensor

Video
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General Flow of Using Point 
Clouds

Applications (path planning)

Point cloud Maps (octree or grid)

Update
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Map Representations

3D Grid Map Octree Data Structure
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Occupancy Map Representation
● OctoMap [Wurm et al., ICRA, 2010 ]

● Encode an occupancy probability of cell 𝑛 given 
measurement 𝑧ଵ:௧

𝟏:𝒕 𝟏:𝒕ି𝟏 𝒕
Occupancy probability of the 

cell 𝑛 at time step 𝑡 − 1
New sensor measurement 𝑧௧
to be updated at time step 𝑡𝐿  𝑛  𝑧௧ ) = ቊ 𝑙௢௖௖      𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑠𝑡𝑎𝑡𝑒 𝑙௙௥௘௘ 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒
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Update Method
● Traverse and update cells

● Bresenham algorithm [Amanatides et al., 
Eurographics, 1987 ]

Updated cell to occupied 
state𝐿  𝑛  𝑧௧ ) =  𝑙௢௖௖ = 1.0
Updated cell to free state𝐿  𝑛  𝑧௧ ) =  𝑙௙௥௘௘ = −0.5

Time: ௔௖௖௘௦௦

𝑡௔௖௖௘௦௦: time to update a 
cell
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Update Method
● Traverse and update cells

● Bresenham algorithm [Amanatides et al., 
Eurographics, 1987 ]

● Can be very slow, with many points
Time: ௔௖௖௘௦௦ - Visit the same cells 

multiple times for 
multiple rays

𝑡௔௖௖௘௦௦: time to update a 
cell
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Super Rays [Kwon et al., ICRA16]
● Benefits of our approach

● Faster performance with the same representation 
accuracy

● Codes are available
Time: 𝒈𝒆𝒏 + 5 ௔௖௖௘௦௦Time: ௔௖௖௘௦௦

State-of-the-art method Ours
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Learning based Approaches
● Unobserved regions due to occlusion and 

sensor errors

● Estimate status of such regions based on 
learning techniques
● [Kwon et al., 

IROS 20]
https://sgvr.kaist.ac.kr/~yskwon/papers/
iros20-akimap/
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Class Objectives were:
● Understand collision detection and distance 

computation
● Bounding volume hierarchies

● Handle point clouds
● Ch. 4 of my book
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Next Time…
● Probabilistic Roadmaps
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Homework
● Submit summaries of 2 

ICRA/IROS/RSS/CoRL/TRO/IJRR papers
● Go over the next lecture slides
● Come up with two questions before the 

mid-term exam


