CS686: Reinforcement Learning

Sung-Eui Yoon (윤성의)

Course URL: http://sgvr.kaist.ac.kr/~sungeui/MPA

Class Objectives

 Discuss basic concepts of reinforcement learning

- Last time:
 - RRT techniques and kinodynamic planner

Branches of Machine Learning

Characteristics of Reinforcement Learning

- What makes reinforcement learning different from other machine learning paradigms?
 - There is no supervisor, only a reward signal
 - Feedback is delayed, not instantaneous
 - Time really matters (sequential, non i.i.d data)
 - Agent's actions affect the subsequent data it receives

Examples of Reinforcement Learning

- Fly stunt maneuvers in a helicopter
- Make a humanoid robot walk
- Manage an investment portfolio
- Play many different Atari games better than humans

Rewards

- A reward R_t is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximize cumulative reward

Reinforcement learning is based on the reward hypothesis

Definition (Reward Hypothesis)

All goals can be described by the maximization of expected cumulative reward

Examples of Rewards

- Fly stunt maneuvers in a helicopter
 - + reward for following desired trajectory
 - reward for crashing
- Make a humanoid robot walk
 - + reward for forward motion
 - reward for falling over
- Manage an investment portfolio
 - + reward for each \$ in bank

Sequential Decision Making

Goal

- Select actions to maximize total future reward
- Actions may have long term consequences
 - Reward may be delayed
 - It may be better to sacrifice immediate reward to gain more long-term reward

• Examples:

- Refueling a helicopter (might prevent a crash in several hours)
- Blocking opponent moves (might help winning chances many moves from now)

Agent and Environment

• At each step t, the agent:

- Receives observation O_t
- Receives scalar reward R_t
- Executes action A_t

• The environment:

- Receives action A_t
- Emits observation O_{t+1}
- Emits scalar reward R_{t+1}
- t increments at env. step

History and State

 The history is the sequence of observations, actions, rewards

$$H_t = O_1, R_1, A_1, ..., A_{t-1}, O_t, R_t$$

- What happens next depends on the history:
 - The agent selects actions
 - The environment selects observations/rewards
- State is the information used to determine what happens next
- Formally, state is a function of the history:

$$S_t = f(H_t)$$

Information State

 An information state (a.k.a. Markov state) contains all useful information from the history

Definition

A state S_t is Markov if and only if

$$P[S_{t+1} | S_t] = P[S_{t+1} | S_1, ..., S_t]$$

- "The future is independent of the past given the present"
- Once the state is known, the history may be thrown away

Major Components of an RL Agent

- An RL agent may include one or more of these components:
 - Policy: agent's behavior function
 - Value function: how good is each state and/or action
 - Model: agent's representation of the environment

Policy

- A policy is the agent's behavior
 - A map from state to action, e.g.
- Deterministic policy: $a = \pi(s)$
- Stochastic policy: $\pi(a|s) = P[A_t = a|S_t = s]$

Value Function

- Value function is a prediction of future reward
 - Used to evaluate the goodness/badness of states, and thus to select between actions, e.g.

$$V_{\pi}(s) = E_{\pi} [R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ... | S_t = s]$$

Playing Atari with Deep Reinforcement Learning

Model

- A model predicts what the environment will do next
 - P predicts the next state
 - R predicts the next (immediate) reward, e.g.

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' \mid S_t = s, A_t = a]$$

 $\mathcal{R}_{s}^{a} = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$

Maze Example

- Rewards: -1 per time-step
- Actions: N, E, S, W
- States: Agent's location

Maze Example: Policy

• Arrows represent policy $\pi(s)$ for each state s

Maze Example: Value Function

• Numbers represent value $v_{\pi}(s)$ of each state s

Action-Value Function: Q-function

 Expected return starting from state s, taking action A and then following policy with γ as the discounting factor.

$$Q^{\pi}(s,a) = \mathbb{E}\left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s,a\right]$$

Goodness of state given an action a

Learning and Planning

- Two fundamental problems in sequential decision making:
- Reinforcement Learning:
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy
- Planning:
 - A model of the environment is known
 - The agent performs computations with its model (without any external interaction)
 - The agent improves its policy
 - a.k.a. deliberation, reasoning, introspection, pondering, thought, search

Learning and Planning

- Rules of the game are unknown
- Learn directly from interactive game-play
- Pick actions on joystick, see pixels and scores

Exploration and Exploitation (1)

- Reinforcement learning is like trial-anderror learning
 - The agent should discover a good policy from its experiences of the environment without losing too much reward along the way

Exploration and Exploitation (2)

- Exploration finds more information about the environment
- Exploitation exploits known information to maximize reward
- It is usually important to explore as well as exploit
- Example of game playing
 - Exploitation: Play the move you believe is best
 - Exploration: Play an experimental move

DQN: Deep Q-Network

- DQN = Q-learning + Deep Network
 - Stabilize training with experience replay: store experience in a buffer and randomly sample them, to break the correlation between consecutive samples
 - End-to-end RL approach, flexible

Class Objectives were:

- Discuss basic concepts of reinforcement learning
- Detailed lectures on the topic:
 - https://www.davidsilver.uk/teaching/

No More HWs on:

 Paper summary and questions submissions

• Instead:

Focus on your paper presentation and project progress!

