
Dynamic Region-biased
Rapidly-exploring Random Trees

by

Jory Denny, Read Sandstrom, Andrew Bregger, and Nancy M. Amato

University of Richmond, Richmond VA, USA

Texas A&M University, College Station, TX, USA

Presenter: Jae Won Choi

RRT Review

RRT Review
• RRT - Randomized Sampling

RRT Review
• RRT - Randomized Sampling

RRT Review
• RRT - Randomized Sampling

RRT Review
• RRT - Randomized Sampling

RRT Review
• RRT - Randomized Sampling

RRT Review
• RRT - Randomized Sampling

RRT Review
• RRT - Randomized Sampling

RRT Review
• RRT - Randomized Sampling

RRT Review
• RRT - Randomized Sampling

RRT Review
• RRT - Randomized Sampling

+ Simple way to construct an
approximate model of problem space

RRT Review
• RRT - Randomized Sampling

+ Simple way to construct an
approximate model of problem space

- Weak with narrow and cluttered spaces

Related Work 1
• Dynamic Domain RRT

+ Reduces unnecessary samples
from boundary regions
+ High probability of sampling
narrow passage
- Worst case same as Regular RRT

(a)Regular RRT sampling domain
(b)Visible Voronoi region
(c)Dynamic Domain

Dynamic-Domain RRTs: Efficient Exploration by Controlling the Sampling Domain by Yershova, Jaillet, Simeon, and La Valle.

Related Work 2
• Obstacle-based RRT (OBRRT) :

• Growing tree based on obstacle hints

1. Choose a node to grow from –

2. Choose a growth method

3. Generate target configuration

4. Extend from source configuration

toward target configuration

G0: Basic Extension
G1: Random position, Same orientation
G2: Random obstacle vector, Random
Orientation
G3: Random Obstacle Vector, Same
Orientation
G4: Rotation followed by Extension
G5: …
G6: …
…
G9

An Obstacle-Based Rapidly-Exploring Random Tree by Samuel Rodriguez, Xinyu Tang, Jyh-Ming Lien and Nancy M. Amato

Related Work 3
• Retraction-based RRT

+ Improve performance of RRT in narrow passages by sampling near
the boundary of C-obstacle

- Slower than Regular RRT when there are no narrow passages

An Efficient Retration-based RRT Planner by Liangjun Zhang and Dinesh Manocha

Related Work 4
• RRT*

• Tree locally rewires itself to
ensure optimization of a cost
function

+ Effective in finding shortest
path

- In practice, it requires many
iterations to produce near
optimal solutions

(a) 500, (b) 1500, (c) 2500, (d) 5000,
(e) 10,000, (f) 15,000 iterations

More Related Works
• RRT-Blossom

• Stable Sparse-RRT

…

Dynamic Region RRT
Input: Environment e and a query (qs, qg)

1. G <- Compute Embedding Graph(e)
[pre computation]

2. F <- Compute Flow Graph (G, qs, qg)

3. R <- Initialize Regions (F, qs)

4. While not done do

5. Region Biased RRT Growth (F, R)

Dynamic Region RRT
Input: Environment e and a query (qs, qg)

1. G <- Compute Embedding Graph(e)
[pre computation]

2. F <- Compute Flow Graph (G, qs, qg)

3. R <- Initialize Regions (F, qs)

4. While not done do

5. Region Biased RRT Growth (F, R)

Dynamic Region RRT
Input: Environment e and a query (qs, qg)

1. G <- Compute Embedding Graph(e)
[pre computation]

2. F <- Compute Flow Graph (G, qs, qg)

3. R <- Initialize Regions (F, qs)

4. While not done do

5. Region Biased RRT Growth (F, R)

Dynamic Region RRT
Input: Environment e and a query (qs, qg)

1. G <- Compute Embedding Graph(e)
[pre computation]

2. F <- Compute Flow Graph (G, qs, qg)

3. R <- Initialize Regions (F, qs)

4. While not done do

5. Region Biased RRT Growth (F, R)

Dynamic Region RRT
Input: Environment e and a query (qs, qg)

1. G <- Compute Embedding Graph(e)
[pre computation]

2. F <- Compute Flow Graph (G, qs, qg)

3. R <- Initialize Regions (F, qs)

4. While not done do

5. Region Biased RRT Growth (F, R)

1. Embedding Graph
• Computing Embedding Graph

1. Embedding Graph
• Computing Embedding Graph

Generalized Voronoi Graph

1. Embedding Graph
• Computing Embedding Graph

1. Compute Tetrahedralization of
the environment

1. Embedding Graph
• Computing Embedding Graph

1. Compute Tetrahedralization of
the environment

2. Construct a Reeb Graph from
the Tetrahedralization

1. Embedding Graph
• Computing Embedding Graph

1. Compute Tetrahedralization of
the environment

2. Construct a Reeb Graph from
the Tetrahedralization

Saddle

Maximum

Minimum

F = z coordinate of a point
on manifold M

1. Embedding Graph
• Computing Embedding Graph

1. Compute Tetrahedralization of
the environment

2. Construct a Reeb Graph from
the Tetrahedralization

Saddle

Maximum

Minimum

2 Minimums 2 MaximumsSaddleSaddle Saddle Saddle

F = z coordinate of a point
on manifold M

F = y coordinate of a point
on manifold M

1. Embedding Graph
• Computing Embedding Graph

1. Compute Tetrahedralization of
the environment

2. Construct a Reeb Graph from
the Tetrahedralization

Saddle

Maximum

Minimum

F = z coordinate of a point
on manifold M

1. Embedding Graph
• Computing Embedding Graph

1. Compute Tetrahedralization of
the environment

2. Construct a Reeb Graph from
the Tetrahedralization

3. Embed the Reeb graph back to
the Environment

1. Embedding Graph
• Computing Embedding Graph

1. Compute Tetrahedralization of
the environment

2. Construct a Reeb Graph from
the Tetrahedralization

3. Embed the Reeb graph back to
the Environment

Naïve Reeb Graph Algorithm: O(n2)

1. Embedding Graph
• Computing Embedding Graph

1. Compute Tetrahedralization of
the environment

2. Construct a Reeb Graph from
the Tetrahedralization

3. Embed the Reeb graph back to
the Environment

Naïve Reeb Graph Algorithm: O(n2)
Fast Reeb Graph Algorithm: O(n log(n))

2. Flow Graph
• Computing Flow Graph

2. Flow Graph
• Computing Flow Graph

1. Perform BFS from the nearest node qs

2. Flow Graph
• Computing Flow Graph

1. Perform BFS from the nearest node qs

2. Flow Graph
• Computing Flow Graph

1. Perform BFS from the nearest node qs

2. Flow Graph
• Computing Flow Graph

1. Perform BFS from the nearest node qs

2. Backtrack from the nearest node to qg

to trim unrelated edges to a solution
path (pruning)

2. Flow Graph
• Computing Flow Graph

1. Perform BFS from the nearest node qs

2. Backtrack from the nearest node to qg

to trim unrelated edges to a solution
path (pruning)

2. Flow Graph
• Computing Flow Graph

1. Perform BFS from the nearest node qs

2. Backtrack from the nearest node to qg

to trim unrelated edges to a solution
path (pruning)

2. Flow Graph
• Computing Flow Graph

1. Perform BFS from the nearest node qs

2. Backtrack from the nearest node to qg

to trim unrelated edges to a solution
path (pruning)

3. Region-biased RRT Growth
• Four steps

3. Region-biased RRT Growth
• Four steps

1. Region-biased RRT extension

* Samples the region for a and
then performs like any RRT method

3. Region-biased RRT Growth
• Four steps

1. Region-biased RRT extension

* Samples the region for a and
then performs like any RRT method

2. Advance regions along flow edges

3. Region-biased RRT Growth
• Four steps

1. Region-biased RRT extension

* Samples the region for a and
then performs like any RRT method

2. Advance regions along flow edges

3. Delete useless regions(heuristic)

4. Create new regions

3. Region-biased RRT Growth
• Four steps

1. Region-biased RRT extension

* Samples the region for a and
then performs like any RRT method

2. Advance regions along flow edges

3. Delete useless regions(heuristic)

4. Create new regions

Evaluation

Results on Holonomic

Results on non-holonomic
+ Dynamic biased RRT works on non-holonomic problems

- SyClop performs better

* SyClop has faster neighbor selection routine

Results

Q&A

