Value Iteration Networks

Aviv Tamar Joint work with Pieter Abbeel, Sergey Levine, Garrett Thomas, Yi Wu

Presented by: Kent Sommer Most content directly from Aviv Tamar's 2016 presentation

April 25, 2017

Korea Advanced Institute of Science and Technology

INTRODUCTION

· Goal: autonomous robots

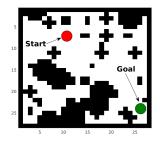
Robot, bring me the milk bottle!

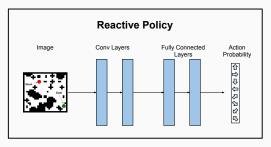
 \cdot Solution: RL?

- $\cdot\,$ Deep RL learns policies from high-dimensional visual input^{1,2}
- · Learns to act, but does it **understand**?
- · A simple test: generalization on grid worlds

¹Mnih et al. Nature 2015 ²Levine et al. JMLR 2016

INTRODUCTION





Why don't reactive policies generalize?

- · A sequential task requires a planning computation
- $\cdot\,$ RL gets around that learns a mapping
 - $\cdot \ \ \mathsf{State} \to \mathsf{Q}\text{-}\mathsf{value}$
 - $\cdot~$ State \rightarrow action with high return
 - $\cdot~$ State \rightarrow action with high advantage
 - $\cdot \;\; \text{State} \rightarrow \text{expert action}$
 - $\cdot~[\text{State}] \rightarrow [\text{planning-based term}]$
- · Q/return/advantage: planning on training domains
- New task need to re-plan

In this work:

- Learn to plan
- $\cdot\,$ Policies that generalize to unseen tasks

BACKGROUND

Planning in MDPs

- $\cdot \:$ States s $\in \mathcal{S}$, actions a $\in \mathcal{A}$
- \cdot Reward R(s, a)
- \cdot Transitions P(s'|s,a)
- · Policy $\pi(a|s)$
- · Value function $V^{\pi}(s) \doteq \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \middle| s_{0} = s \right]$
- · Value iteration (VI)

$$\begin{split} V_{n+1}(s) &= \max_{a} Q_n(s,a) \quad \forall s, \\ Q_n(s,a) &= R(s,a) + \gamma \sum_{s'} P(s'|s,a) V_n(s'). \end{split}$$

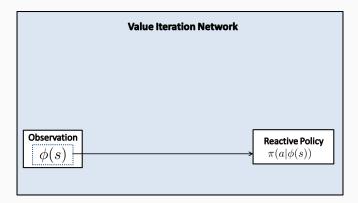
- \cdot Converges to V* = max_{π} V^{π}
- · Optimal policy $\pi^*(a|s) = \arg \max_a Q^*(s, a)$

Policies in RL / imitation learning

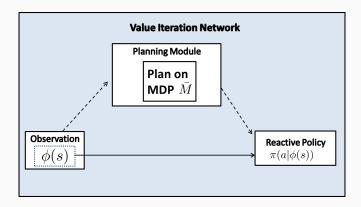
- · State observation $\phi(s)$
- Policy: $\pi_{\theta}(a|\phi(s))$
 - · Neural network
 - $\cdot\,$ Greedy w.r.t. Q (DQN)
- \cdot Algorithms perform SGD, require $abla_{ heta}\pi_{ heta}(\mathsf{a}|\phi(\mathsf{s}))$
- · Only loss function varies
 - · Q-learning (DQN)
 - · Trust region policy optimization (TRPO)
 - · Guided policy search (GPS)
 - · Imitation Learning (supervised learning, DAgger)
- $\cdot\,$ Focus on policy representation
- · Applies to model-free RL / imitation learning

A MODEL FOR POLICIES THAT PLAN

· Start from a reactive policy

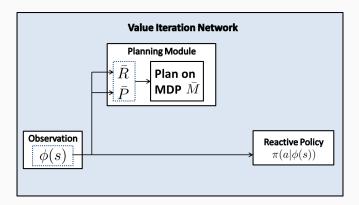


- · Add an explicit planning computation
- \cdot Map observation to planning MDP $ar{\mathsf{M}}$



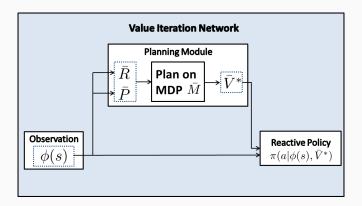
• Assumption: observation can be mapped to a useful (but **unknown**) planning computation

- · NNs map observation to reward and transitions
- · Later learn these



How to use the planning computation?

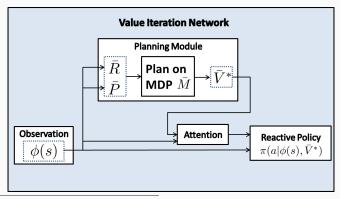
- Fact 1: value function = sufficient information about plan
- \cdot Idea 1: add as features vector to reactive policy



 $\cdot\,$ Fact 2: action prediction can require only subset of \bar{V}^*

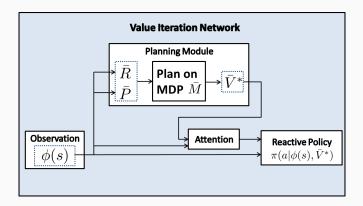
$$\pi^*(\mathbf{a}|\mathbf{s}) = \underset{\mathbf{a}}{\arg\max} R(\mathbf{s},\mathbf{a}) + \gamma \sum_{\mathbf{s}'} P(\mathbf{s}'|\mathbf{s},\mathbf{a}) V^*(\mathbf{s}')$$

· Similar to attention models, effective for learning¹



¹Xu et al. ICML 2015

- · Policy is still a mapping $\phi(s) \rightarrow \text{Prob}(a)$
- · Parameters θ for mappings \overline{R} , \overline{P} , attention
- · Can we backprop?



How to backprop through planning computation?

VALUE ITERATION = CONVNET

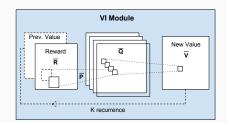
VALUE ITERATION = CONVNET

Value iteration

K iterations of:

$$\begin{split} \bar{Q}_{n}(\bar{s},\bar{a}) &= \bar{R}(\bar{s},\bar{a}) + \sum_{\bar{s}'} \gamma \bar{P}(\bar{s}'|\bar{s},\bar{a}) \bar{V}_{n}(\bar{s}') \\ \bar{V}_{n+1}(\bar{s}) &= \max_{\bar{a}} \bar{Q}_{n}(\bar{s},\bar{a}) \quad \forall \bar{s} \end{split}$$

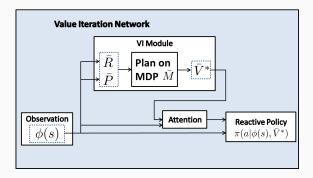
<u>Convnet</u>



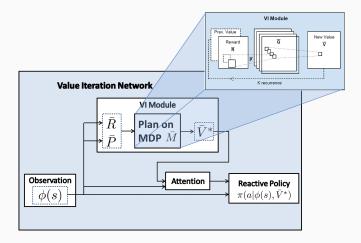
- $\cdot \,\, \bar{\mathcal{A}}$ channels in $\bar{\mathsf{Q}}$ layer
- · Linear filters $\iff \gamma \bar{\mathsf{P}}$
- · Tied weights
- · Channel-wise max-pooling
- · Best for locally connected dynamics (grids, graphs)
- · Extension input-dependent filters

VALUE ITERATION NETWORKS

 \cdot Use VI module for planning



· Value iteration network (VIN)



EXPERIMENTS

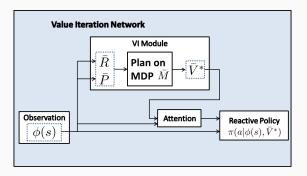
Questions

- 1. Can VINs learn a planning computation?
- 2. Do VINs generalize better than reactive policies?

- · Supervised learning from expert (shortest path)
- \cdot Observation: image of obstacles + goal, current state
- $\cdot\,$ Compare VINs with reactive policies

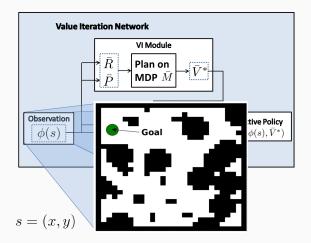
- · VI state space: grid-world
- VI Reward map: convnet
- \cdot VI Transitions: 3 imes 3 kernel

- Attention: choose Q
 values
 for current state
- Reactive policy: FC, softmax



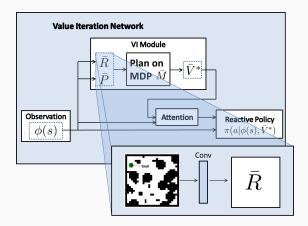
- · VI state space: grid-world
- VI Reward map: convnet
- \cdot VI Transitions: 3 imes 3 kernel

- Attention: choose Q
 values
 for current state
- Reactive policy: FC, softmax



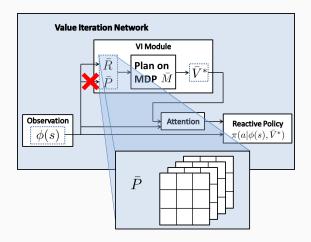
- · VI state space: grid-world
- · VI Reward map: convnet
- \cdot VI Transitions: 3 \times 3 kernel

- Attention: choose Q
 values
 for current state
- · Reactive policy: FC, softmax



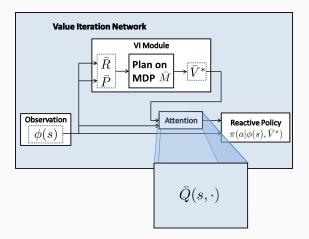
- · VI state space: grid-world
- · VI Reward map: convnet
- $\cdot\,$ VI Transitions: 3 \times 3 kernel

- Attention: choose Q
 values
 for current state
- Reactive policy: FC, softmax



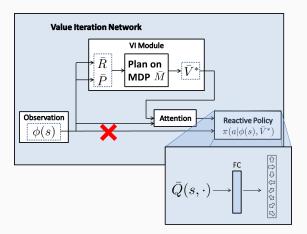
- · VI state space: grid-world
- · VI Reward map: convnet
- $\cdot\,$ VI Transitions: 3 \times 3 kernel

- Attention: choose Q
 values
 for current state
- Reactive policy: FC, softmax



- · VI state space: grid-world
- · VI Reward map: convnet
- $\cdot\,$ VI Transitions: 3 \times 3 kernel

- Attention: choose Q
 values
 for current state
- · Reactive policy: FC, softmax



Compare with:

- · CNN inspired by DQN architecture¹
 - · 5 layers
 - $\cdot\,$ Current state as additional input channel
- $\cdot\,$ Fully convolutional net (FCN)^2 $\,$
 - · Pixel-wise semantic segmentation (labels=actions)
 - $\cdot\,$ Similar to our attention mechanism
 - · 3 layers
 - $\cdot\,$ Full-sized kernel receptive field always includes goal

Training:

- · 5000 random maps, 7 trajectories in each
- · Supervised learning from shortest path

¹Mnih et al. Nature 2015 ²Long et al. CVPR 2015

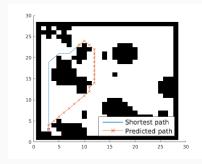
Evaluation:

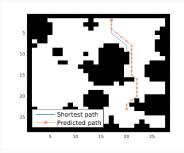
- · Action prediction error (on test set)
- · Success rate reach target without hitting obstacles

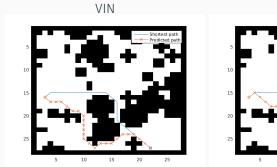
Results:

Domain	VIN		CNN		FCN	
	Prediction	Success	Pred.	Succ.	Pred.	Succ.
	loss	rate	loss	rate	loss	rate
8 × 8	0.004	99.6%	0.02	97.9%	0.01	97.3%
16 × 16	0.05	99.3%	0.10	87.6%	0.07	88.3%
28 × 28	0.11	97%	0.13	74.2%	0.09	76.6%

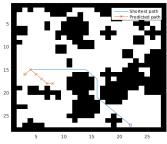
VINs learn to plan!

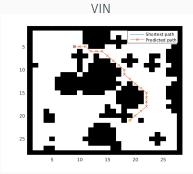




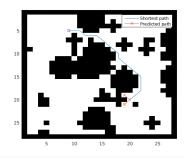


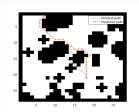
FCN

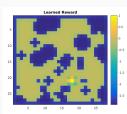


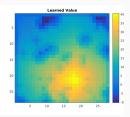


FCN









SUMMARY & OUTLOOK

- \cdot Learn to plan \rightarrow generalization
- · Framework for planning based NN policies
 - Motivated by dynamic programming theory
 - Differentiable planner (VI = CNN)
 - · Compositionality of NNs perception & control
 - · Exploits flexible prior knowledge
 - $\cdot\,$ Simple to use

THANK YOU!