PLATO: Policy Learning using Adaptive Trajectory Optimization

Gregory Kahn et al., ICRA 2017

SeungWoon Kim

Probabilistic 3D Sound Source Mapping using Moving Microphone Array / IROS 2016

1. SLAM

- → Find the hardware's location in the 3D map
- 2. Sound Localization
 - → Detect the directions of sound
- 3. Particle Filter
 - → Calculate the conversion region of directions
 - Sound Source Region Detection

Contents

- □ Motivation
- □ Background
- □ Main Contribution
- □ Results
- □ Discussion
- □ Summary and Q&A

Motivation (1)

- □ Policy search(via optimization or RL) is used in many robotic tasks
 - Manipulation
 - Self-driving vehicles

https://am.is.tuebingen.mpg.de/uploads/research_project/image/45/unmounting_wheel.jpg

http://iranjavan.net/wp-content/uploads/2016/08/wdd2.jpg

Motivation (2)

- □ What is Policy search?
 - Strategy for finding optimal control for robots and autonomous system
 - Strategy that combines perception and control
- Two obstacles when using RL in the real world
 - RL is difficult to apply to large non-linear function approximators.
 - A partially trained policy can perform unreasonable and even unsafe actions.
- → To select optimal learning method is important!

Background

☐ Method comparison

- DAgger method
 - Selects between teacher and current policy during training with some probability
- MPC-guided policy search
 - Seeks to minimize KL-divergence between the teacher and policy distributions.
 - * KL divergence is a measure (but not a metric) of the nonsymmetric difference between two probability distributions

Main Idea (1)

□ PLATO

- Trains neural networks policies using an adaptive MPC
- Teacher: adaptive MPC (Model-Predictive Control)
 * MPC is a traditional optimal control algorithm

Algorithm

```
1: Initialize data \mathcal{D} \leftarrow \emptyset
 2: for i = 1 to N do
         for t = 1 to T do
 3.
             Optimize \pi_{\lambda}^{t} with respect to Equation
                                                                              Optimize with respect to KL-divergence
 4:
             Sample \mathbf{u}_t \sim \pi_{\lambda}^t(\mathbf{u}|\mathbf{x}_t,\theta)
 5:
             Optimize \pi^* with respect to Equation
                                                                              Optimize with respect to teacher
             Sample \mathbf{u}_t^* \sim \pi^*(\mathbf{u}|\mathbf{x}_t)
 7:
             Append (\mathbf{o}_t, \mathbf{u}_t^*) to the dataset \mathcal{D}
             State evolves \mathbf{x}_{t+1} \sim p(\mathbf{x}_{t+1}|\mathbf{x}_t,\mathbf{u}_t)
         end for
10:
         Train \pi_{\theta_{i+1}} on \mathcal{D}
12: end for
```

Main Idea (2)

□ The advantages of this approach

- The teacher can exploit the true state, while the policy is only trained on the observations
- We can choose a teacher that will remain safe and stable, avoiding dangerous actions during training
- We can train the final policy using standard and robust supervised learning algorithms

Results (1)

Approach

Results (2)

□ Approach

 Task: A series of simulated quadrotor navigation tasks (with laser, camera)

- Comparison methods
 - DAgger
 - Coaching algorithm
 - MPC-GPS
 - Standard supervised learning
- Environments: winding canyon with randomized turns, dense forest of cylindrical trees
 - Canyon : changes direction up to $\pi/4$ radians every 0.5m
 - Forest: composed of 0.5m radius cylinders with an average spacing of 2.5m

Results (3)

Results (4)

- □ Evaluation(centered by PLATO)
 - Can learn effective policies faster, and converges to a solution that is better than other methods.
 - Experiences less than one crash per episode.
 - Successfully learn polices, outperforming prior methods and minimizing the number of crashes.

Results (5)

Neural Network Policies Learned by PLATO

Discussion

- □ The advantages
 - Benefits from the robustness of MPC
 - * minimizing catastrophic failures at training time
 - Use a different set of observations than MPC
 - * the policy can be directly on raw input from onboard sensors, forcing it to perform both perception and control
- □ The advantages
 - Difficult to apply in most real-world scenarios
 - * requires full state knowledge to train
- □ Outlook
 - Possibility of acquiring real-world network policies that directly use rich sensory inputs
 - Apply PLATO on real physical platforms

Summary and Q&A

□ Any Question?

