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Motivation (1)

Policy search(via optimization or RL) IS used
In many robotic tasks
o Manipulation

o Self-driving vehicles
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Motivation (2)

What is Policy search?
o Strategy for finding optimal control for robots
and autonomous system

o Strategy that combines perception and control

Two obstacles when using RL in the real

world
o RL is difficult to apply to large non-linear function
approximators.

o A partially trained policy can perform
unreasonable and even unsafe actions.

— To select optimal learning method Is important!
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Background

Method comparison

o DAgger method

- Selects between teacher and current policy during
training with some probability

o MPC-guided policy search
- Seeks to minimize KL-divergence between the teacher

and policy distributions.
* KL divergence is a measure (but not a metric) of the non-
symmetric difference between two probability distributions
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Main ldea (1)

PLATO

o Trains neural networks policies using an adaptive MPC

o Teacher : adaptive MPC (Model-Predictive Control)
*MPC is a traditional optimal control algorithm

o Algorithm

1: Initialize data D < 0

2: fori=1to N do

32 fort=1toT do
4 Optimize w5 with respect to Equation
5: Sample w; ~ 3 (u|x, 6)
6 Optimize 7* with respect to Equation
7 Sample uj ~ 7" (u|xy)
8 Append (Dt: u;f) to the dataset D
9: State evolves Xy ~ p(X¢p1|Xe, Wy)
10:  end for

11:  Train mp,,, on D
12: end for

Optimize with respect to KL-divergence

Optimize with respect to teacher
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Main ldea (2)

The advantages of this approach
o The teacher can exploit the true state, while the

policy is only trained on the observations

o We can choose a teacher that will remain safe
and stable, avoiding dangerous actions during

training

o We can train the final policy using standard and

robust supervised learning algorithms
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Results (1)

Approach

Label with locally

(state, observation) optimal MPC controller

~— = L
’ Execute adaptive

MPC controller (observation, optimal action)
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Train neural network
policy Data
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Results (2)

Approach
o Task : A series of simulated quadrotor navigation
tasks (with laser, camera) @

o Comparison methods \ '
- DAgger ‘
- Coaching algorithm \
- MPC-GPS i ‘
- Standard supervised learning I - -

o Environments : winding canyon with randomized

turns, dense forest of cylindrical trees
- Canyon : changes direction up to /4 radians every 0.5m
- Forest : composed of 0.5m radius cylinders with
an average spacing of 2.5m
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Results (3)
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Results (4)

Evaluation(centered by PLATO)
o Can learn effective policies faster, and converges
to a solution that is better than other methods.

o EXxperiences less than one crash per episode.

o Successfully learn polices, outperforming prior
methods and minimizing the number of crashes.
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Results (5)

Neural Network Policies
Learned by PLATO
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Discussion

The advantages

o Benefits from the robustness of MPC
* minimizing catastrophic failures at training time

o Use a different set of observations than MPC
* the policy can be directly on raw input from onboard
sensors, forcing it to perform both perception and control

The advantages

o Difficult to apply in most real-world scenarios
* requires full state knowledge to train

Outlook

o Possibility of acquiring real-world network
policies that directly use rich sensory inputs

14 o Apply PLATO on real physical platforms KAIST
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Summary and Q&A

Any Question?
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