Probabilistically Complete Kinodynamic Planning
for Robot Manipulators with Acceleration Limits

Alexander Holston

Tobias Kunz and Mike Stilman ~ IR0S2014

5/11

KAIST

Contents

e Objective

e Background/Related Work
e Method

e Results

e Conclusion

KAIST

Objectives

e Create an efficient kinodynamic planner
e Uses joint acceleration limits

e Shows how dynamically optimal paths can
be calculated

e Further investigates path feasibility

e Considers paths with non-zero start or end
starts

e |.e. hitting a nail with a hammer

KAIST

Background — Geometric Planner

e First intuition would be to planning using
RRT

e RRT is a successful geometric planner
e Works quickly for high DoF

e RRT relies on a good ‘steer’ function
e Joins two states together

e Typically, for differential constraints efficient
methods do not exist

r—>

KAIST

Background — KinoDynamic RRT

e Tree growth simulates a small time-step
forward with a control input

e Two methods
e Select control input randomly

eDoes not grow efficiently
(Probabilistically Complete)

e Test multiple control inputs

e In general not probabilistically complete
(Distance does not match dynamics)

KAIST

Background — KinoDynamic RRT

e To overcome RRT problem KinoDynamic
RRT was created

e Combined incremental simulator with RRT
e Uses distance function to connect

\

KAIST

Background — KinoDynamic RRT

e To overcome RRT problem KinoDynamic
RRT was created

e Combined incremental simulator with RRT

e Uses distance function to connect
eDistance is uninformed of dynamics
eCannot explore the space efficiently

New node

\

KAIST

Method - Introduction

e This paper adds acceleration limits to
actuators

e Gives ability to apply Bounded Value Problem
eSolving simplified ODE between two points

e This steer function gives ability to drive
towards optimal next state

e We can find dynamical distance between
two states

e Non-zero end points are now possible

e Simplified ODE makes general path planning
faster

KAIST

Method — Steer Function

e Break up each DoF to compute
1. Find minimum time
2. Check for infeasibility in solution

e A particular velocity or position may not
connect with another

e We consider these Iimits

Pmin < P < Pmax
— VUmax E v i Umax

—Qmax < A < Apax

KAIST

Method — Minimum Time

e Move at acceleration lImit —@max < @ < @nax

e Connection between two points made of only 2
or 3 segments

e3'd segment is velocity is exceeded

KAIST

11

Method — Minimum Time

e Determine sign of first acceleration a4

e Regions: I, I, 111
eSame sign as v

e Regions: IV, V
eOpposite sign as v

|va —’Ul\

1
APacc = é(vl + UQ)

max
g = Sgll(PQ —P1— Apacc)
a1 = —3 = O0pax

Vlimit = 0 Umax

KAIST

12

Method — Minimum Time

e Given we only have two accelerations
e Accelerate fully, and decelerate fully
e Solve the minimum time

e If velocity limit is reached

e Third segment is dictated by velocity instead of
acceleration

KAIST

13

Method — Infeasibility

e Consider high DoF
e Each is calculated individually
e Given obstacles etc. each DoF may need to wait
eThis can be done by slowing acceleration
e Need to be sure it is possible

e Infeasibility only possible in Region: |

> P p
I\Y / I

14

Method — Solving Connection

e Solve for minimum acceleration between
two points

e Remember there are infinite possible solutions
between two points

e Solve for a4
T?ay + (2T (vi+v2) — 4(p2—p1)) a1 — (va—v1)* = 0

e Find trajectory times

1 fvo —
'!’ﬂ.l — = (”2 o +T) -!*U,Q =1 — iul

2 a1

e Check if max velocity is violated — Set function for acceleration
accordingly (@)
, 2.)2 f o \2 Vlimit — S8\ A1) Umax

(Viimit — v1)* + (Viimit — v2)

2(Vimi I — (p2 — p1)) KAIST

a1 = —a9 =

15

Method — RRT Implementation

e Now that the steer function is configured it
IS Implemented into an RRT algorithm

e Bidirectional RRT Connect

e\Works from both ends

eFrom goal with reversed dynamics
e Rejects infeasible samples

©929%0 rejection

KAIST

16

Method — RRT Implementation

e Get sample
e Use steer to check if feasible
e Add intermediate states to V and E
e If both connect to same point — Success

e NearestNeighbour uses Steer to search

Algorithm 1: DIMT-RRT (i, X goat, At) Algorithm 2: Connect(V, E, xanq, d, At)
1 Vi {zim}; 1 < 0; 1 Tpear ¢ NearestNeighbor(V, ang, d);
2 Vo ¢ Xgoas Fo < 0; 2 (T, 0) < Steer(Znear, Trand, d);
3 d = true; 3 if CollisionFree(T', o) then
4 while true do 4 Xint ¢ IntermediateStates(7', o, At);
5 Trand < SampleReachableState(); 5 V VU Xin U {%rana };
6 if Connect(V7, E', Zrang, d, At) then 6 E + E U {Zoear} X Xint U {(Znears Trand) };
7 if Connect(Va, E, Zrana, —d, At) then . return true:
8 | return ExtractTrajectory(Vy, Ey, Va, Ea, d); s else
? jwap(éVhE 1): (Va, E2)); 9 | return false;
10 = —d;

KAIST

17

Results

e Tested on problem of hitting nail on the

head

e Acceleration is important to give force to the nail
e Velocity needs to be parallel

DIMT-RRT [this paper]

Kinodynamic RRT [6]

after 100 after 200

RRT only shortcuts shortcuts

samples 39.5 -
+ 41.3

nodes 567.1 -
+ 407.0

Computation 56 ms 113 ms 157 ms

time +54ms +63ms £+ 65ms

Trajectory 124 s 64 s 6.1s

length +40s + 1.1s + 1.1s

extend connect extend connect
samples 9,019 14.6 > 1,000,000
+ 8,415 + 10.8
nodes 9,633 434.1 > 900,000 > 2,500,000
+ 8.096 + 188.4
Computation 19.8 s 37 ms > 8 hours > 23 hours
time + 37.1s + 22 ms

KAIST

Results

e Geometric Planner reaches the nail but
ignores the required dynamics (reaches the
sides)

NN TN TY

Fig. 6. The DIMT-RRT planner hits the nail at the desired velocity

INININ NN

Fig. 7. The geometric RRT planner reaches the nail but not at the desired velocity

18 KAIST

Conclusion

e Acceleration limits were applied to allow a
steer function to replace distance

e Allows efficient calculations that consider real
dynamics

e Gives a probabilistically complete outcome

e Solution can adequately explore feasible
solutions while extending towards the desired
outcome

eDue to ability to computer BVP

e Good balance between geometric planner
and full dynamic simulations KAIST

19

20

Q&A

KAIST

	슬라이드 번호 1
	Contents
	Objectives
	Background – Geometric Planner
	Background – KinoDynamic RRT
	Background – KinoDynamic RRT
	Background – KinoDynamic RRT
	Method - Introduction
	Method – Steer Function
	Method – Minimum Time
	Method – Minimum Time
	Method – Minimum Time
	Method – Infeasibility
	Method – Solving Connection
	Method – RRT Implementation
	Method – RRT Implementation
	Results
	Results
	Conclusion
	Q&A

