Probabilistically Complete Kinodynamic Planning for Robot Manipulators with Acceleration Limits

Alexander Holston

Tobias Kunz and Mike Stilman ~ IROS2014

Contents

- Objective
- Background/Related Work
- Method
- Results
- Conclusion

Objectives

- Create an efficient kinodynamic planner
 - Uses joint acceleration limits
- Shows how dynamically optimal paths can be calculated
 - Further investigates path feasibility
- Considers paths with non-zero start or end starts
 - i.e. hitting a nail with a hammer

Background – Geometric Planner

- First intuition would be to planning using RRT
 - RRT is a successful geometric planner
 - Works quickly for high DoF
- RRT relies on a good 'steer' function
 - Joins two states together
 - Typically, for differential constraints efficient methods do not exist

Background – KinoDynamic RRT

- Tree growth simulates a small time-step forward with a control input
- Two methods
 - Select control input randomly
 - Does not grow efficiently (Probabilistically Complete)
 - Test multiple control inputs
 - In general not probabilistically complete (Distance does not match dynamics)

Background – KinoDynamic RRT

- To overcome RRT problem KinoDynamic RRT was created
 - Combined incremental simulator with RRT
 - Uses distance function to connect

Background – KinoDynamic RRT

- To overcome RRT problem KinoDynamic RRT was created
 - Combined incremental simulator with RRT
 - Uses distance function to connect
 - Distance is uninformed of dynamics
 - Cannot explore the space efficiently

Method - Introduction

- This paper adds acceleration limits to actuators
 - Gives ability to apply Bounded Value Problem
 - Solving simplified ODE between two points
 - This steer function gives ability to drive towards optimal next state
- We can find dynamical distance between two states
 - Non-zero end points are now possible
 - Simplified ODE makes general path planning faster

Method – Steer Function

- Break up each DoF to compute
 - 1. Find minimum time
 - 2. Check for infeasibility in solution
 - A particular velocity or position may not connect with another

We consider these limits

$$egin{aligned} oldsymbol{p}_{ ext{min}} & \leq oldsymbol{p} \leq oldsymbol{p}_{ ext{max}} \ -oldsymbol{v}_{ ext{max}} & \leq oldsymbol{v} \leq oldsymbol{v}_{ ext{max}} \ -oldsymbol{a}_{ ext{max}} & \leq oldsymbol{a} \leq oldsymbol{a}_{ ext{max}} \end{aligned}$$

Method – Minimum Time

- Move at acceleration limit $-a_{\text{max}} \leq a \leq a_{\text{max}}$
 - Connection between two points made of only 2 or 3 segments
 - •3rd segment is velocity is exceeded

Method – Minimum Time

- Determine sign of first acceleration a_1
 - Regions: I, II, III
 - Same sign as v
 - Regions: IV, V
 - Opposite sign as v

$$\begin{split} \Delta p_{\text{acc}} &= \frac{1}{2}(v_1 + v_2) \frac{|v_2 - v_1|}{a_{\text{max}}} \\ &\sigma = \text{sgn}(p_2 - p_1 - \Delta p_{\text{acc}}) \\ a_1 &= -a_2 = \sigma a_{\text{max}} \\ v_{\text{limit}} &= \sigma v_{\text{max}} \end{split}$$

Method – Minimum Time

- Given we only have two accelerations
 - Accelerate fully, and decelerate fully
 - Solve the minimum time
- If velocity limit is reached
 - Third segment is dictated by velocity instead of acceleration

Method – Infeasibility

- Consider high DoF
 - Each is calculated individually
 - Given obstacles etc. each DoF may need to wait
 - This can be done by slowing acceleration
 - Need to be sure it is possible
- Infeasibility only possible in Region: I

Method – Solving Connection

- Solve for minimum acceleration between two points
 - Remember there are infinite possible solutions between two points
- Solve for a_1

$$T^{2}a_{1}^{2} + (2T(v_{1}+v_{2}) - 4(p_{2}-p_{1}))a_{1} - (v_{2}-v_{1})^{2} = 0$$

Find trajectory times

$$t_{a1} = \frac{1}{2} \left(\frac{v_2 - v_1}{a_1} + T \right) \qquad t_{a2} = T - t_{a1}$$

• Check if max velocity is violated – Set function for acceleration accordingly $v_{
m limit} = {
m sgn}(a_1) \ v_{
m max}$

$$a_1 = -a_2 = \frac{(v_{\text{limit}} - v_1)^2 + (v_{\text{limit}} - v_2)^2}{2(v_{\text{limit}}T - (p_2 - p_1))}$$

KAIST

Method – RRT Implementation

- Now that the steer function is configured it is implemented into an RRT algorithm
 - Bidirectional RRT Connect
 - Works from both ends
 - From goal with reversed dynamics
 - Rejects infeasible samples
 - •92% rejection

Method – RRT Implementation

- Get sample
 - Use steer to check if feasible
 - Add intermediate states to V and E
 - If both connect to same point Success
- NearestNeighbour uses Steer to search

```
Algorithm 1: DIMT-RRT(x_{\text{init}}, X_{\text{goal}}, \Delta t)
                                                                                                  Algorithm 2: Connect(V, E, x_{rand}, d, \Delta t)
1 V_1 \leftarrow \{x_{\text{init}}\}; E_1 \leftarrow \emptyset;
                                                                                                 1 x_{\text{near}} \leftarrow \text{NearestNeighbor}(V, x_{\text{rand}}, d);
2 V_2 \leftarrow X_{\text{goal}}; E_2 \leftarrow \emptyset;
                                                                                                 2 (T, \sigma) \leftarrow \text{Steer}(x_{\text{near}}, x_{\text{rand}}, d);
d = true;
                                                                                                 3 if CollisionFree(T, \sigma) then
4 while true do
                                                                                                          X_{\text{int}} \leftarrow \text{IntermediateStates}(T, \sigma, \Delta t);
          x_{\text{rand}} \leftarrow \text{SampleReachableState()};
                                                                                                        V \leftarrow V \cup X_{\text{int}} \cup \{x_{\text{rand}}\};
          if Connect(V_1, E_1, x_{rand}, d, \Delta t) then
6
                                                                                                          E \leftarrow E \cup \{x_{\text{near}}\} \times X_{\text{int}} \cup \{(x_{\text{near}}, x_{\text{rand}})\};
               if Connect(V_2, E_2, x_{rand}, \neg d, \Delta t) then
                                                                                                          return true:
                      return ExtractTrajectory(V_1, E_1, V_2, E_2, d);
8
                                                                                                 8 else
          Swap((V_1, E_1), (V_2, E_2));
9
                                                                                                           return false;
          d = \neg d;
10
```


Results

- Tested on problem of hitting nail on the head
 - Acceleration is important to give force to the nail
 - Velocity needs to be parallel

	RRT only	after 100 shortcuts	after 200 shortcuts
# samples	39.5 ± 41.3	-	-
# nodes	567.1 ± 407.0	-	-
Computation time	56 ms ± 54 ms	113 ms ± 63 ms	157 ms ± 65 ms
Trajectory length	12.4 s ± 4.0 s	6.4 s ± 1.1 s	6.1 s ± 1.1 s

	DIMT-RRT extend	[this paper] connect	Kinodynar extend	nic RRT [6] connect
# samples	9,019 ± 8,415	$\begin{array}{c} 14.6 \\ \pm \ 10.8 \end{array}$	> 1,000,000	
# nodes	9,633 ± 8,096	434.1 ± 188.4	> 900,000	> 2,500,000
Computation time	19.8 s ± 37.1 s	37 ms ± 22 ms	> 8 hours	> 23 hours

Results

 Geometric Planner reaches the nail but ignores the required dynamics (reaches the sides)

Fig. 6. The DIMT-RRT planner hits the nail at the desired velocity

Fig. 7. The geometric RRT planner reaches the nail but not at the desired velocity

Conclusion

- Acceleration limits were applied to allow a steer function to replace distance
 - Allows efficient calculations that consider real dynamics
- Gives a probabilistically complete outcome
 - Solution can adequately explore feasible solutions while extending towards the desired outcome
 - Due to ability to computer BVP
- Good balance between geometric planner and full dynamic simulations

Q&A

?

