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Problem Statement

Robot equipped with a first
person camera

Dropped into a novel environment Navigate in the
environment

Robot Navigation in novel envionments
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Motivation: Intelligent Navigation

What does it mean to navigate intelligently?

• Navigate through novel environments
• Draw on prior experience or similar conditions
• Reason about free-space, obstacle-space, topology
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Motivation: Why Are Humans So Good?

Humans can often reason about their environment while classical agents
can at best do uninformed exploration

• Know where we are likely to find a chair
• Know that hallways often lead to other hallways
• Know common building patterns
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Classical Work

• Over-complete
• Precise reconstruction of

everything is not necessary

• Incomplete
• Nothing is known till it is

explicitly observed, fail to
exploit the structure of the
world

• Only geometry, no semantics

• Unnecessarily fragile due to
separation between mapping
and planning

LSD-SLAM

RRT
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Contemporary Work

Target-driven Visual Navigation in Indoor
Scenes using Deep Reinforcement Learning,
Zhu et al., ICRA 2017

End-to-End Training of Deep Visuomotor
Polocies, Levine et al., JMLR 2015

Human-level control through deep
reinforcement learning, Mnih et al., Nature
2014
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Control of Memory, Active Perception, and
Action in Minecraft, Oh et al., IMCL 2016
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Contemporary Work
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Feed Forward architecture without
memory.
• Agent can’t systematically

explore a new environment or
backtrack.

• Agent needs experience with a
new environment before it can
start navigating successfully.
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Contribution

Neural network policy for visual navigation

• Joint architecture for mapping and planning
• Spatial memory with the ability to plan given partial observations
• Is end-to-end trainable
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Cognitive Mapping and Planning: System Overview

90o

Egomotion

Differentiable 
Hierarchical 

Planner

Update multiscale belief 
of the world in egocentric 

coordinate frame

Multiscale belief of the 
world in egocentric 
coordinate frame
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egocentric 
coordinate frame

Goal
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Differentiable Mapper

Fully Connected 
Layers with 

ReLUs.

Encoder Network
(ResNet 50)

Decoder Network with 
residual connections

90o

Egomotion

Differentiable 
Warping

Combine

Confidence and belief about world
from previous time step.

Confidence and belief about world from 
previous time step, warped using egomotion.

Updated confidence and 
belief about world.

Past Frames and Egomotion
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Differentiable Planner

Value Iteration Network1

• Qn(s, a) = R(s, a) + γ
∑

s′ P (s′|s, a)Vn(s′)
• Computed as convolutions

• Vn+1(s) = maxa Qn(s, a) ∀s
• Computed as max pooling over channels

1Aviv Tamar et al. “Value iteration networks”. In: Advances in Neural Information
Processing Systems. 2016, pp. 2146–2154.
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Differentiable Planner: Value Iteration Network

• Qn(s, a) = R(s, a) + γ
∑

s′ P (s′|s, a)Vn(s′)
• Computed as convolutions

• Vn+1(s) = maxa Qn(s, a) ∀s
• Computed as max pooling over channels

Trainable using simulated data
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Experimental Setup: Overview

• Trained and tested in static simulated real-world environments
• Testing environment is different from training environments
• Robot:

• Lives in a grid world, and motion is discrete
• Has 4 macro-actions:

• Go Forward, Turn left, Turn right, Stay in place

• Has access to precise egomotion
• Has RGB and/or Depth Cameras

• All models are trained using DAGGER
• Geometric Task:

• Goal is sampled to be at most 32 time steps away. Agent is run for
39 time steps.

• Semantic Task:
• ’Go to a Chair,’ agent run for 39 time steps.
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Experimental Setup: Dataset

Stanford Building Parser Dataset
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Experimental Setup: Policy Training

Use DAGGER2

3

2Stéphane Ross, Geoffrey J Gordon, and Drew Bagnell. “A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learning.” In: AISTATS.
vol. 1. 2. 2011, p. 6.

3Image from: John Schulmanś Lecture on Reinforcement Learning 15
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Mapper Unit Test

Ground Truth Analytical Project RGB Pred D Pred

16



Navigation Results: Geometric Task

Method
Mean 75th %ile Success %age

RGB Depth RGB Depth RGB Depth

Geometric Task
Initial 25.3 25.3 30 30 0.7 0.7
No Image LSTM 20.8 20.8 28 28 6.2 6.2
Reactive (1 frame) 20.9 17.0 28 26 8.2 21.9
Reactive (4 frames) 14.4 8.8 25 18 31.4 56.9
LSTM 10.3 5.9 21 5 53.0 71.8
Our (CMP) 7.7 4.8 14 1 62.5 78.3

Geometric Results: Mean distance to goal location, 75th percentile distance to goal and success
rate after executing the policy for 39 time steps.
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Navigation Results: Semantic Task

Method
Mean 75th %ile Success %age

RGB Depth RGB Depth RGB Depth

Semantic Task (Aggregate)
Initial 16.2 16.2 25 25 11.3 11.3
Reactive 14.2 14.2 22 23 23.4 22.3
LSTM 13.5 13.4 20 23 23.5 27.2
Our (CMP) 11.3 11.0 18 19 34.2 40.0

Semantic Results: Mean distance to goal location, 75th percentile distance to goal and success
rate after executing the policy for 39 time steps.
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Successful Navigations

Agents exhibit backtracking behavior!
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Failure Cases

Missed Thrashing Tight
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Demo

Video Demonstration
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https://www.youtube.com/watch?v=BNmz3xBtcJ8
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Summary

• Joint fully end-to-end neural network policy for mapping and
planning

• Uses mapping module to map from RGB and/or Depth images to a
top-down ego-centric belief map

• Uses a Value Iteration Network to plan in the belief map generated
by the mapper

• Trains the end-to-end policy using DAGGER
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Questions?
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Quiz

• Why was DAGGER used to train the models?
1. Other training methods were not possible
2. To allow the agent to recover from bad decisions (backtracking)
3. To minimize crashes in simulation
4. Because it has a cool name

• The model was trained end-to-end allowing for the mapping module
to encode whatever was most useful to the planning module

1. True
2. False
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