Uncertainty-Aware Reinforcement Learning for Collision Avoidance

Gregory Kahn et al.

SeungWoon Kim

Real-Time 3D Navigation for Autonomous Vision-Guided MAVs / Seungwon Song

- Simplify Quadrotor dynamic
- Reduce resolution of Octomap (octants)
- Octree-Based State Lattice
 - Adjacency between octree node states
 - Multi-resolution path lookup-table
 - Pre-discretization
- Local 3D State Lattice
- Graph search
 - Optimal path finding
 - Path reconstruction

Contents

- □ Motivation
- □ Background
- □ Main Idea
- □ Results
- □ Discussion
- □ Summary and Q&A

Motivation (1)

- □ Policy search via Reinforcement Learning is used in many robotic tasks
 - Self-driving vehicles
 - Drones

http://iranjavan.net/wp-content/uploads/2016/08/wdd2.jpg

http://geekongadgets.com/wp-content/uploads/2016/09/Drone.jpg

Motivation (2)

- □ Reinforcement Learning
- Agent Environment observation, reward
- Many RL: Experience failures at training time
- Other RL: Ensure safety by assuming complete state and environment knowledge at training time
 - → can restrict the feasibility of real-world robot deployment

In safety-critical domains, choosing proper RL method is important.

Motivation (3)

☐ How robot like quadrotor and RC-car avoid obstacles without collision?

□ To avoid obstacle, the robot trains itself by experiencing collision

Problem statement

- ☐ How to do reinforcement learning without destroying the robot during training using only images?
- □ Uncertainty-aware collision prediction model
 - Enable a robot to learn how to accomplish a task in unknown environment
 - While only experiencing gentle collisions

Background

- □ Model-free method
 - Simplicity and favorable computational property

- ☐ Model-based method
 - Sample-efficient

This approach adopt a model-based learning, learn uncertainty-aware collision avoidance model

Contribution (1)

Risk-averse collision prediction probability

$$\begin{split} & (\widetilde{P}_{\theta})(\text{COLL}|\mathbf{x}_{t}, \mathbf{u}_{t:t+H}, \mathbf{o}_{t}) = & \text{Variance Value (model is certain)} \\ & L(\mathbb{E}[f_{\theta}(\mathbf{x}_{t}, \mathbf{u}_{t:t+H}, \mathbf{o}_{t})] + (\lambda_{\text{STD}}) \sqrt{\text{Var}[f_{\theta}(\mathbf{x}_{t}, \mathbf{u}_{t:t+H}, \mathbf{o}_{t})]}) \end{split}$$

Expected Value (predict collision) Non-negative user-defined scalar

Cost of Task

$$C(\mathbf{x}_{t+H}, \mathbf{u}_{t+H}) \approx C_{\text{TASK}}(\mathbf{x}_{t+H}, \mathbf{u}_{t+H}) + \widetilde{P}_{\theta}(\text{COLL}|\mathbf{x}_{t}, \mathbf{u}_{t:t+H}, \mathbf{o}_{t}) C_{\text{COLL}}(\mathbf{x}_{t+H})$$

Collision probability function

○ x_t: Current state / u_t: Action / o_t: Observation

Contribution (2)

- ☐ Uncertainty aware model-based RL
 - Uses bootstrapping and dropout to yield actionable uncertainty estimates
 - Process raw sensory inputs such as camera etc.
- □ Why dropout and bootstrapping?
 - Dropout : can estimate uncertainty for regression tasks such as motor control
 - Bootstrapping : likely to estimate high uncertainty in novel environments

Contribution (2)

Algorithm 1 Neural net training with bootstrapping and dropout

```
1: input: dataset \mathcal{D} = \{\mathbf{x}_t^{(i)}, \mathbf{u}_{t:t+H}^{(i)}, \mathbf{o}_t^{(i)}\}, neural network model NN
```

- 2: **for** b = 1 to B **do**
- 3: Sample a dataset of subsequences $\mathcal{D}^{(b)}$ from the full Bootstrapping (3) dataset \mathcal{D} with replacement
- Initialize neural network NN^(b) with random weights
- 5: **for** number of SGD iterations **do**
- 6: Sample datapoint $(\mathbf{x}_t, \mathbf{u}_{t:t+H}, \mathbf{o}_t)$ from $\mathcal{D}^{(b)}$
- 7: Sample $NN_d^{(b)}$ by masking the units in $NN^{(b)}$ using Dropout (7) dropout
- 8: Run forward pass on $NN_d^{(b)}$ using $(\mathbf{x}_t, \mathbf{u}_{t:t+H}, \mathbf{o}_t)$
- 9: Run backward pass on $NN_d^{(b)}$ to get gradient $g_d^{(b)}$
- 10: Update model NN^(b) parameters using $g_d^{(b)}$
- 11: end for
- 12: end for

Gradient updates (8~10)

Main Idea (1)

□ Approach

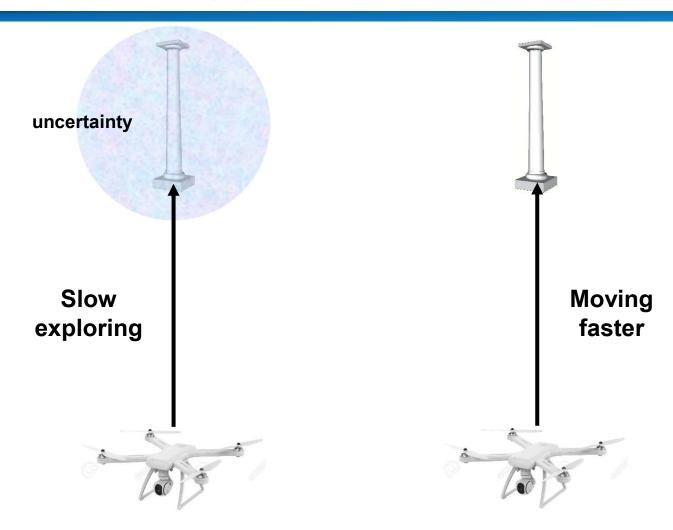
- Uncertainty-aware collision prediction model,
 Speed-dependent collision cost
- When uncertainty is high → exploring cautiously
 When uncertainty is low → moving faster
- Input: image, a sequence of velocity commands
- Output : the probability of collision
- Goal: avoid obstacles in an unknown environment

Algorithm 2 RL with Risk-Averse Collision Estimates

```
1: Initialize empty dataset \mathcal{D}
```

- 2: Initialize collision prediction model \widetilde{P}_{θ}
- 3: for iter=1 to max_iter do
- 4: Sample trajectories $\{\tau_i\}$ using MPC with cost C
- 5: Add samples $\{\tau_i\}$ to \mathcal{D}
- 6: Train \widetilde{P}_{θ} using \mathcal{D} (Alg. 1)
- 7: end for

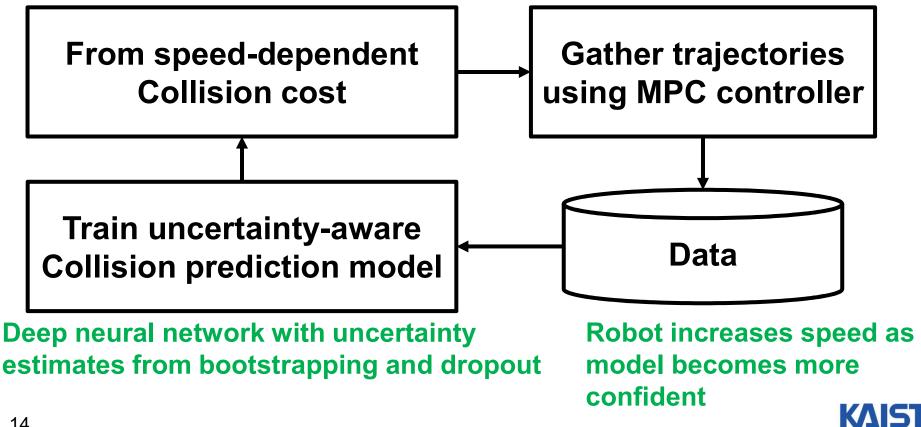
Main Idea (2)



Main Idea (3)

☐ Model-based RL Algorithm

Experience safe, low-speed collisions by reasoning about the model's uncertainty



Results (1)

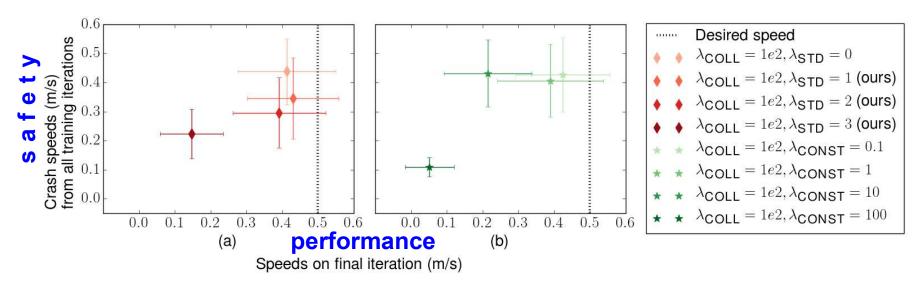
□ Experiments

- Task : Navigating in an unknown environment without collision
- Object : Quadrotor, RC-car
- Environments: Simulated and Real-world



Results (2)

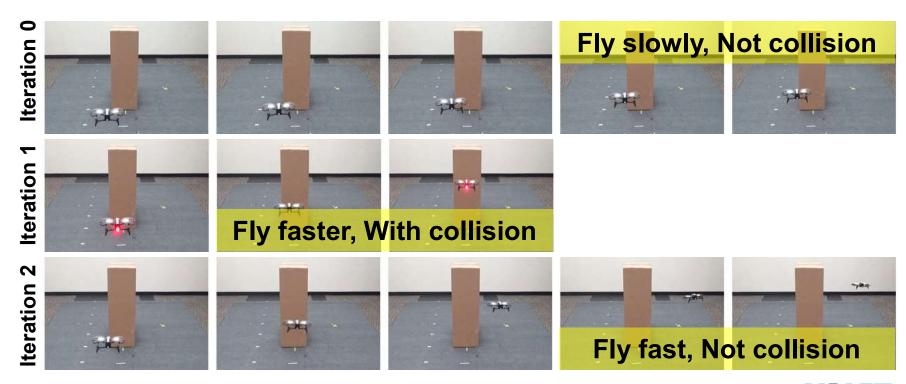
- □ Quadrotor
 - Obstacle : cylindrical obstacle
 - Results



- λ_{COLL} : non-negative user-defined scalar that weights the relative importance of C_{COLL} versus C_{TASK} / collision cost
- λ_{STD} : non-negative user-defined scalar
- λ_{CONST} : non-negative user-defined scalar replaces the λ_{STD}

Results (3)

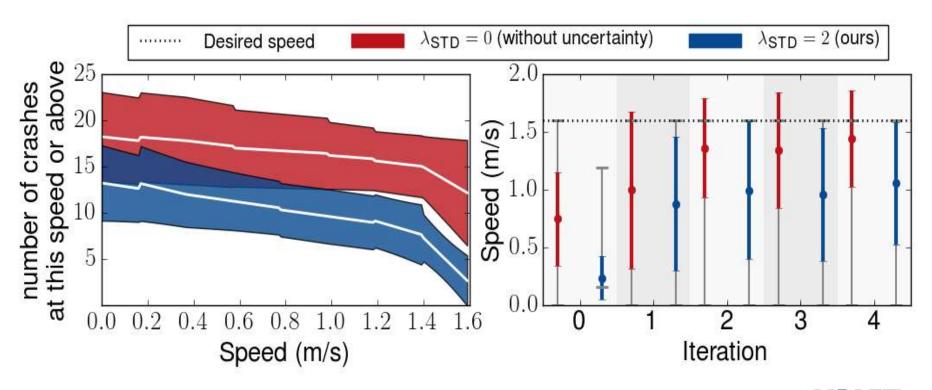
- ☐ Real-world quadrotor
 - Obstacle: rectangular obstacle
 - Results



Results (3)

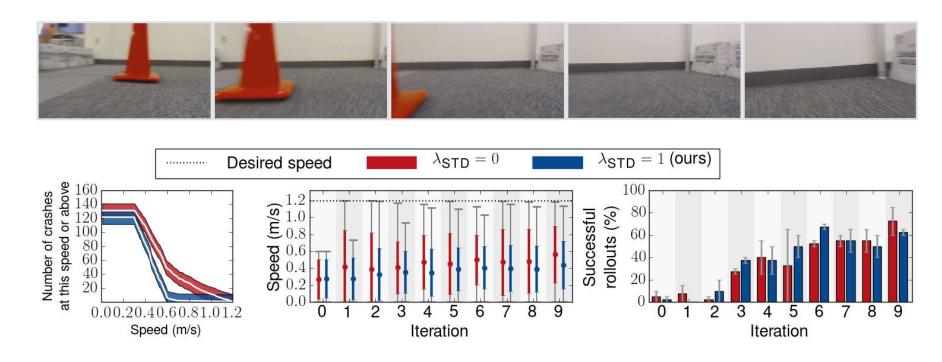
☐ Real-world quadrotor

Results



Results (4)

- ☐ Real-world RC car
 - Obstacle : Circular cone obstacle
 - Results



Results (5)

Uncertainty-Aware Reinforcement Learning for Collision Avoidance

Discussion

□ The advantages of this approach

- By directly estimating model uncertainty, we do not rely on a discriminative safety estimator
- Does not assume the existence of a manually designed safety control, but instead naturally reverts to more cautious exploratory behavior in the presence of uncertainty.

Summary and Q&A

□ Summary

- Model-based combined perception and control method for learning obstacle avoidance
- Predict the probability of collision conditioned on raw sensory inputs and a sequence of actions
- This approach is safer compared to methods without uncertainty estimates in experiments
- □ Any Question?

