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Real-Time 3D Navigation for Autonomous
Vision-Guided MAVs / Seungwon Song

e Simplify Quadrotor dynamic
e Reduce resolution of Octomap (octants)

e Octree-Based State Lattice

e Adjacency between octree node states
e Multi-resolution path lookup-table

e Pre-discretization

e Local 3D State Lattice

e Graph search
e Optimal path finding

¢ Path reconstruction
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Motivation (1)

Policy search via Reinforcement Learning
Is used In many robotic tasks
o Self-driving vehicles

o Drones

http://iranjavan.net/wp-content/uploads/2016/08/wdd2.jpg http://geekongadgets.com/wp-
content/uploads/2016/09/Drone.jpg
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Reinforcement Learning ~_ —

observation, reward
o Many RL : Experience failures at training time

o Other RL : Ensure safety by assuming complete
state and environment knowledge at training time

— can restrict the feasibility of real-world robot
deployment

In safety-critical domains, choosing proper RL
method is important.
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Motivation (3)

How robot like quadrotor and RC-car
avoid obstacles without collision?

To avoid obstacle, the robot trains itself
by experiencing collision
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Problem statement

How to do reinforcement learning without
destroying the robot during training using
only images?

Uncertainty-aware collision prediction model
o Enable a robot to learn how to accomplish a task

in unknown environment

o While only experiencing gentle collisions
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Background

Model-free method
o Simplicity and favorable computational property

Model-based method

o Sample-efficient

This approach adopt a model-based learning, learn
uncertainty-aware collision avoidance model
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Contribution (1)

Risk-averse collision prediction probability

COLL|X“ Ut:t4H, Ot) = Variance Value (model is certain)

L(€

[ f(xt, ut:t+H,Of) —|-@\/. Xt, Ut:t4+H , Ot)])

Expected Value (predict collision) Non-negative user-defined scalar

Cost of Task

C(Xt+H, Ut H) XtJrHa U g )+

ﬁQ(COLL‘Xh Ut H OtXt+H)

Collision probability function

X, : Current state / u, : Action / o, : Observation
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Contribution (2)

Uncertainty aware model-based RL
o Uses bootstrapping and dropout to yield actionable

uncertainty estimates
o Process raw sensory inputs such as camera etc.

Why dropout and bootstrapping?

o Dropout : can estimate uncertainty for regression
tasks such as motor control

o Bootstrapping : likely to estimate high
uncertainty in novel environments
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Contribution (2)

Algorithm 1 Neural net training with bootstrapping and dropout

1:

10:
5

12

input: dataset D = {xi”.lxiirf{,ngﬂ}. neural network

model NN
- for b=1to B do

Sample a dataset of subsequences D®) from the full| Bootstrapping (3)

dataset D with replacement

Initialize neural network NN® with random weights

for number of SGD iterations do
Sample datapoint (x¢, Ug.p+p7,0¢) from Db
Sample Nl\IEfj by masking the units in NN®) using Dropout (7)
dropout
Run forward pass on NN&H{busing (2, “t:t+H=‘11;) Gradient updates
Run backward pass on NNd} to get gradient gé (8~10)
Update model NN®) parameters using Qizb}

end for

end for
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Main Idea (1)

O

Approach

Uncertainty-aware collision prediction model,
Speed-dependent collision cost

When uncertainty is high — exploring cautiously
When uncertainty is low — moving faster

Input : image, a sequence of velocity commands
Output : the probability of collision

Goal : avoid obstacles in an unknown environment
Algorithm 2 RL with Risk-Averse Collision Estimates

1: Inmitialize empty dataset D ~

2. Inmitialize collision prediction model Py

3: for iter=1 to max_iter do

4:  Sample trajectories {7;} using MPC with cost C
5 Add samples {7;} to D

6 Train P, using D (Alg. m}

.

end for KAIST
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Main Idea (2)

- <
uncertainty
Slow Moving
exploring faster
o ’Mi & 3 £ ?k_wg e -
/&1 S o
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Main Idea (3)
Model-based RL Algorithm

Experience safe, low-speed collisions by
reasoning about the model’s uncertainty

From speed-dependent Gather trajectories
Collision cost using MPC controller

T l
<

Train uncertainty-aware

<
Collision prediction model L Data
Deep neural network with uncertainty Robot increases speed as
estimates from bootstrapping and dropout model becomes more
confident
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Results (1)

Experiments

o Task : Navigating in an unknown environment
without collision

o Obiject : Quadrotor, RC-car

o Environments : Simulated and Real-world
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Results (2)

Quadrotor
o Obstacle : cylindrical obstacle

o Results
0.6 ;
@ | o« =2 |l =  _% 2 | | v Desired speed
S, 609 AcoLL = 1e2,Agtp =0
+ 5504 ; ¢ AcoLL = le2. Agtp = 1 (ours)
DES.. — ¢ AcoLL = le2,\g1p = 2 (ours)
w— o 203} : | _
® B o : ¢ ¢ AcoLL = le2 Agtp = 3 (ours)
@ 0.2¢ E 1 :
0w o= AcoLL = 1e2,A\consT = 0.1
< @ 0.1 t © AcoLL = 12, AconsT = 1
= : ;
gg 0.0} : : * * AcoLL = le2.AconsT = 10
L L L L L 1 L L L L L 1 — -) =
0.0 01 02 03 04 05 0.6 00 01 02 03 04 05 06 |* * AgoLL= 1€, AponsT =100

(a) performance (b)
Speeds on final iteration (m/s)

- AcoLL : Non-negative user-defined scalar that weights the relative importance
of Cco L Versus Cyask / collision cost

- Agtp - non-negative user-defined scalar

- AconsT - hon-negative user-defined scalar replaces the Agrp
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Results (3)

Real-world quadrotor
o Obstacle : rectangular obstacle

o Results

I ,;| I ‘ I l Fli lei Not ciion |

Iteration 2 Iteration 1 Iteration 0



Results (3)

Real-world quadrotor

o Results

--------- Desired speed ~ WEEEEM AsTp = 0 (without uncertainty) M AsTp = 2 (ours)
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Results (4)

Real-world RC car
o Obstacle : Circular cone obstacle

o Results

------------- Desired speed MM AsTD =0

[sh]
2 5 %g 1.2 e T e e
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Results (5)

Uncertainty-Aware Reinforcement Learning
for Collision Avoidance

b -
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Discussion

The advantages of this approach
o By directly estimating model uncertainty, we do

not rely on a discriminative safety estimator

o Does not assume the existence of a manually
designed safety control, but instead naturally
reverts to more cautious exploratory behavior in

the presence of uncertainty.
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Summary and Q&A

Summary

o Model-based combined perception and control
method for learning obstacle avoidance

o Predict the probability of collision conditioned on
raw sensory inputs and a sequence of actions

o This approach is safer compared to methods
without uncertainty estimates in experiments

Any Question?

KAIST
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