Real-Time 3D Navigation for Autonomous Vision-
Guided MAVs

Seungwon Song

2017.05.23
CS686
Paper Presentation #2

KAIST

Suzi Kim’s Presentation

Constriction Point

Cell Decomposition Cell Visit
- Shrink Using TSP
- Split

KAIST

Contents

e Introduction

e Conventional approach
e Basic concepts

e Detail of each concepts

e Result

KAIST

Introduction

e Regular 3D state lattice requires a large amount of
memory while graph search even though problem
Is easier to solve.

e Using Octree-based state lattice which represent
discretizes large swathes of free space into few
symbolic octants.

e Warning!

e It does not contain any Math, just in robotical
perspective!

e So, just basic result comparison with conventional
method.

KAIST

Conventional Approach

e There are several grid-based path planning
method in 2D.

e In 3D, there are too many points, so reduced them
by using Octomap.

e Using reduced 3D grid, Researchers can use
conventional A* or other algorithms

Please Select the Vehicle initial position

Grid based pathplanning Octomap KAIST

Basic Concepts

e Simplify Quadrotor dynamic
e Reduce resolution of Octomap (octants)

e Octree-Based State Lattice

e Adjacency between octree node states
e Multi-resolution path lookup-table

e Pre-discretization

e Local 3D State Lattice

e Graph search
e Optimal path finding

e Path reconstruction

KAIST

Octree-Based State Lattice

e Adjacency between octree node states

e To determine whether two octants are adjacent to each other.

e If distance between two cell’s center exceeds half of the sum of
two octants’ cell size, two octants are not adjacent.

(

Distance between two cell
Is longer then the half of the sum of

Octants!

)/

/7
Neightar?

Algorithm 1 Algorithm to find neighbors for each of a
node’s children when the node is split.

1: if node is no longer a leaf due to updated map informa-
tion then

2: Split node into eight children (child[i], i € 1,2, ..,8)

33 fori=1-—8do

4 child-node = child[i]

5 add the child-node’s brothers (child[j], j # i, j €

1,2,...8) as neighbors
6: for each neighbor of node, neighbor(k] do

7: if neighbor[k] is still the neighbor of child-node
after the split then

8: add neighbor(k| as the neighbor of child-node

9: end if

10: end for

11: end for

12: end if

KAIST

Octree-Based State Lattice

- - Algorithm 2 Multi-resolution path lookup-table construc-
- - nhon.
e Multi-resolution path lookup-table _—
z==N—=N,j=1-16 do
LUT_COSTI[i][x][y][z][j] = infinity
LUT_PATH[i][x][y][=][j] = undefined
end for
cfori=1-— 16 do
for every state v in the state lattice de
dist[v] := infinity
previous[v] := undefined
end for
() := empty priority gqueue
s_start := the origin of the lattice with an orientation
index @

in the table? e 0

14: while @ is not empty do

e Computing path between every octants’ consume

much computational cost.

e A A

e How about save all pre-computed cost and path

- - 15: u = verlex in (@ with minimum dist[u]
e They set 16 states in yaw angle (22.5 deg inc) 16 remove u from Q
17: for each neighbor v of u do
18: 7 := the orientation index of v
- 19: (dx, dy, dz) = the 3D coordinate difference
e They set lookup index (04,X;-X,,Y1-Y2,Z1-Z5, 6,) between u and o
20: checkdist := dist[u] + cost(u,v)
21: if checkdist < dist[v] then
0.3 %m 22: dist[v] = checkdist
e 23: previous[v] = u
I" = 24; LUT_COST[:][d=][dy][d=][;] = checkdist
25: waypoint = v
-, : 26: clear LUT_PATH[{][dx][dy][d=][5]
s I___.--"_' i 27 while waypoint # s_start do
rd 3 | 3 28: push back waypoint o
. [| | LI | | | LUT_PATH[:][dx |[dy][d=][7]
. -{_ i : | 29: waypoint = previous[waypoint]
:""'a oL 30: end while
*, . . 31: end if
-5 .10 . 32 end for
33 end while
i 34: end for

KAIST

Octree-Based State Lattice

Algorithm 2 Multi-resolution path lookup-table construc-

e Multi-resolution path lookup-table -

z==N—=N.j=1-16 do

- 2. LUT_COSTI[i][z][y][=][;] = infinity
o But save all computation result consume lots of - vvresmeieii - wieines

4: end for

5. for i =1 — 16 do
6. for every state v in the state lattice do
7 dist[v] := infinity
8 previous[v] := undefined
9. end for
0
1

e They just consider ‘distance’ as cost. 0 Q= ety prioy qeue

memory!

s_start := the origin of the lattice with an orientation
index i

e So, (0,0,0, 6,) to (x,y,z,0,) can be reflected to b insee o.start 0 Q

14: while @ is not empty do

I 15: u = verlex in (@ with minimum dist[u]
- 16: remove u from ()
(0’0’0’ 91) to (x’y’ z’ 62) = 17: for each neighbor v of u do
18: 7 := the orientation index of v
- 19: (dx, dy, dz) = the 3D coordinate difference
e Also, all 16 possible 0, can bereduced to between o and o
20: checkdist := dist[u] + cost(u,v)
21: if checkdist < dist[v] then

0, 22- 5,45 deg reeS. i dist[v] := checkdist

previous[v] = u

24: LUT_COST[i][dx][dy][dz][j] = checkdist
- 25: waypoint = v
e So, they say memory requirement reduced by 90% clear LUT_PATH#][d][dy](d=]Lj]
27 while waypoint # s_start do
28: push back waypotnt to

LUT_PATH[i][dz)[dy][d=]L5]

29: waypoint = previous[waypoint]
0 end while

31 end if

32 end for

3 end while

34: end for

KAIST

10

Octree-Based State Lattice

e Pre-discretization

Octree-based state lattice may compute highly suboptimal path.
More octree level means large pre-computed cost and path table.

So they enforce a minimum octree level on all leaf node.

Hm

I6m

=

Croal

Path

length: 25.78 m

Path

length: 1

"6 m

(roal

(a)

(b)

KAIST

11

Local 3D State Lattice

e Path planning is critical especially for obstacle avoidance.

e They make local high-resolution state lattice centered on the

MAV.

X — %

e These method can maintain octree-based graph structure.

e Can help the MAV navigate around nearby obstacles.

KAIST

Graph Search

e Optimal Path Finding

e Use simple A* graph search algorithm. (Using the method above, any

A* based algorithm can be used)

e AX* algorithm heavily depends on the quality of the heuristic function.

eThey applied holonomic-with-obstacles heuristic [1]

— Ignores the non-holonomic nature of robot, and then make 2D path with obstacle map

— 3D space into 2D space by f>(x, v) = ming f3(x, v,). which means that 2D state is
assumed to be safe (no collision) if there exists at least one safe 3D state with same 2D

projection.
eThey reduced candidate states, so A* able to find the best path in

short time.

12 [1] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James MIST
Diebel, Path Planning for Autonomous Vehicles in Unknown Semistructured Environments. The International Journal of Robotics Research;"April."2010:

Graph Search

e Path reconstruction

e Path obtained by A* is actually a series of high-resolution primitive
motion.

e They look up the path decompositions in the multiresolution lookup
table.

16 m

Green dot : Node achieved by A*
Grey dot : actual waypoints
Clay line : final full path

I m

13 KAIST

Result

e Time & Memory usage reduce
e For 50 different goals with maximum resolution of 0.25m
e Compare with regular-state-lattice-based path planner.

TABLE I: Statistical Results from Simulation Experiments.

Our Path Planner | Baseline Path Planner

Map Update Time'(s) 0.0991 0.0185

Graph Search Time~(s) 0.299 10.1803
Heuristics Time (s) 0.0288 0.0288

Total Time (s) 0.428 10.23

Total Path Length (m) 1108.32 100921
Optimality Ratio 1.11 1

Memory Usage (Gb) 0.474 1.39

! the time taken to update obstacle information and construct graph
1 . . .

< the time taken to run A* algorithm on the given graph

* the time taken to compute heuristics

Goal

KAIST

15

Result

e Unknown Environment

A:

Entire Environment

B : Initial Search to goal
C:
D : Successfully find path

UAV goes through Stairs

KAIST

16

Result

e Real Environment
e Also in real environment, Algorithm

works well.

e UAV found obstacle, and planned path.

KAIST

17

ANY QUESTION?

KAIST

