CS686: High-level Motion/Path Planning Applications

Sung-Eui Yoon (윤성의)

Course URL:

http://sglab.kaist.ac.kr/~sungeui/MPA

Class Objectives

- Discuss my general research view on motion planning
 - Discuss related applications
- Study task planning

- Many robots are available
 - Different sensors and controls
- Basic controls are developed with such robots
 - Primitive motions are developed together
- Therefore, motion/path planning are widely researched

- General motion planning tools
 - Primitive controls are available at HW vendors
 - How can we design a standard MP library working with those different robots?
 - For example, OpenGL for the robotics field; vendors support OpenGL, and programmer uses OpenGL for their applications

- High-level motion strategy are necessary
 - Optimal paths given constraints
 - Handling multiple robots for certain tasks
 - E.g., how can we efficiently assemble and disassemble the Boeing plane?

- High-level motion strategy are necessary
 - Optimal paths given constraints
 - Handling multiple robots for certain tasks
 - E.g., "Clean them!"

- High-level motion strategy are necessary
 - Optimal paths given constraints
 - Handling multiple robots for certain tasks
 - E.g., dangerous places for human

Task Search and Classification

- Identify and classify a number of initially unknown targets
 - Useful for tedious, dangerous, or impossible for humans (underwater, disaster sites, etc.)
 - How can effectively perform this process during limited deployment time?

Long-horizon Robotic Search and Classification using Sampling-based Motion Planning Hollinger, et al.

Task Search and Classification

Environment (e.g., ocean) monitoring

Different marine sensors, Smith et al.

Use robotic sensor networks

 each node can move autonomously or work with others

Marine sampling

Minority Report

Planning with Dynamics

tribuneindia

Physical Systems Planning

Space of controls is defined

KAIST

Physical System Planning

Given

- 1. an initial state $q_0 \in Q$
- 2. a goal set $G \subset Q$

The discrete physical systems planning problem is to compute a sequence $u_0, ..., u_N$ such that:

$$F(q_i,u_i)=q_{i+1}$$

and $q_{N+1} \in G$ is contained in the goal set.

Planning with Dynamics

- Adding dynamics is essential to increase physical realism
- Techniques from control theory can be used to create better paths
- Still fairly open

Case Study: Self-Driving Cars

Typical systems of autonomous vehicles: many sensors and ECUs

Sensors

Google images

Plan of Development: Response to Plan

Evolve ADAS (Advanced Driver Assistance Systems) focusing on fast response to autonomous driving (high-level reasoning)

ADAS Sensors

- Need to identify lanes, pedestrians, traffic signs, other nearby cars
- Combine radar for detection and camera for recognition

Technical Issues

- High accuracy
 - 99.99% is not enough for detection and recognition problems (e.g., detecting red signs)
- Weather challenges

Bob Donaldson / Post-Gazette

Testing & Certification

Testing becomes exponentially more complex as more sensors and actuators are added to the vehicle.

Automated Planning w/ Motion Planning

• Assemble the chair w/ or even w/o the instruction

ASSEMBLY INSTRUCTIONS 0A1013

(1)CASTER	(2)BASE	(3)GASLIFT	(4)SEAT	00.5		
X5 (5)ARMREST X2	X1 (6)BACK	X1 (7)MECHANISM X1	9	(3) (3) (2) (1)	(6)	(8)-1 (4) (5) (6)
(8)1. □□□□ ×7 (8x20)MM 2. □ ×2 3. ⊙ ×7 4. ○ ×7 5. ∠ ×1				D		

Task Planning

- Works on a high-level sequence of tasks
 - Commonly use motion planners

E.g., Desk cleaning

Task and Motion Planning

Motion planner

Find a collision-free path from a given start position to a goal position

Task planner

 Find a discrete sequence of actions to transition from a given start state to a desired goal state

Overall Process of Task and Motion Planning

HPN

Hierarchical task and motion Planning in the Now –
 [ICRA11]

Large continuous and discrete state space

Long planning and execution horizon

HPN

- Fluent : A set of symbolic predicates
 - In(O,R), ClearX(R, Os), Clean(O), ...
- Operator : A set of primitive actions
 - Pick, Place, Wash, ...


```
PICKPLACE((o, l_{target}), s_{now}, \gamma):

effect: ObjLoc(o, l_{target})

choose: l_{start} \in \{s_{now}[o].loc\} \cup GENERATELOCSINREGIONS((o, \{warehouse, stove, sink\}), s_{now}, \gamma)

pre: ObjLoc(o, l_s)

ClearX(sweptVol(o, l_s, l_t), \{o\})
```


Running Process of HPN

Goal : In(A, storage), Clean(A)

Running Process of HPN

Works in a backward search

Maintain left expansion of plan

tree

in(a, Storage) clean(a)

A:PickPlace(a, ?, Storage)

Class Objectives were:

- Discussed my general research view on motion planning
- Discussed related applications
- Studied task planning

Next Time..

RRT techniques

Homework for Every Class

- Submit summaries of 2 ICRA/IROS/RSS/WAFR/TRO/IJRR papers
- Go over the next lecture slides
- Come up with one question on what we have discussed today and submit at the end of the class

