CS680: Radiometry

Sung-Eui Yoon (윤성의)

Course URL: http://jupiter.kaist.ac.kr/~sungeui/SGA/

Announcements

- 2 papers for each student
 - Choose 4 papers from the paper list
 - Send them (titles of 4 papers) to TA (Bochang Moon) by Oct-11 (Mon)
 - Look at videos and talk files (captured talk video or presentation files)
- Schedule of student presentations
 - Will be decided on Oct-12 (Tue)
 - Presentations will start after the mid-term

Motivation

Light and Material Interactions

- Physics of light
- Radiometry
- Material properties

Rendering equation

Models of Light

- Quantum optics
 - Fundamental model of the light
 - Explain the dual wave-particle nature of light
- Wave model
 - Simplified quantum optics
 - Explains diffraction, interference, and polarization
- Geometric optics
 - Most commonly used model in CG
 - Size of objects >> wavelength of light
 - Light is emitted, reflected, and transmitted

Radiometry

- Measurement of light energy
 - Critical component for photo-realistic rendering
- Light energy flows through space
 - Varies with time, position, and direction
- Radiometric quantities
 - Densities of energy at particular places in time, space, and direction
- Photometry
 - Quantify the perception of light energy

Hemispheres

- Hemisphere
 - Two-dimensional surfaces
- Direction
 - Point on (unit) sphere

$$\theta \in [0, \frac{\pi}{2}]$$
$$\varphi \in [0, 2\pi]$$

From kavita's slides

Solid Angles

Full circle = 2pi radians

Full sphere = 4pi steradians

Solid Angles

2D

Full circle = 2pi radians

 $\Omega = \frac{A}{R^2}$

3D

Full sphere = 4pi steradians

Hemispherical Coordinates

- Direction, (
 - Point on (unit) sphere

$$dA = (r\sin\theta d\varphi)(rd\theta)$$

From kavita's slides

Hemispherical Coordinates

Differential solid angle

$$d\omega = \frac{dA}{r^2} = \sin\theta d\theta d\varphi$$

Hemispherical Integration

Area of hemispehre:

$$\int_{\Omega_x} d\omega = \int_0^{2\pi} d\varphi \int_0^{\pi/2} \sin\theta d\theta$$

$$= \int_0^{2\pi} d\varphi [-\cos\theta]_0^{\pi/2}$$

$$= \int_0^{2\pi} d\varphi$$

$$= 2\pi$$

$$= 2\pi$$

Energy

- Symbol: Q
 - # of photons in this context
 - Unit: Joules

From Steve Marschner's talk

Power (or Flux)

- Symbol, P or Φ
 - Total amount of energy through a surface per unit time, dQ/dt
 - Radiant flux in this context
 - Unit: Watts (=Joules / sec.)
 - Other quantities are derivatives of P
- Example
 - A light source emits 50 watts of radiant power
 - 20 watts of radiant power is incident on a table

Irradiance

- Incident radiant power per unit area (dP/dA)
 - Area density of power

- Area power density existing a surface is called radiance exitance (M) or radiosity (B)
- For example
 - A light source emitting 100 W of area 0.1 m²
 - Its radiant exitance is 1000 W/ m²

Irradiance Example

- Uniform point source illuminates a small surface dA from a distance r
 - Power P is uniformly spread over the area of the sphere

$$dP = P \frac{dA}{4\pi r^2}; E = \frac{dP}{dA} = \frac{P}{4\pi r^2}$$

dA

Irradiance Example

- Uniform point source illuminates a small surface dA from a distance r
 - Power P is uniformly spread over the area of the sphere

$$dP = P \frac{dA}{4\pi r^2}; E = \frac{dP}{dA} = \frac{P}{4\pi r^2}$$

$$E' = \frac{dP}{dA'} = \frac{dP}{dA/\cos\theta} = E\cos\theta$$
© Kavita Bala, Computer Science, Cornell University

Radiance

- Radiant power at x in direction θ
 - $L(x \rightarrow \Theta)$: **5D** function
 - Per unit area
 - Per unit solid angle

Important quantity for rendering

Radiance

- Radiant power at x in direction θ
 - $L(x \rightarrow \Theta)$: 5D function
 - Per unit area
 - Per unit solid angle

$$L(x \to \Theta) = \frac{d^2 P}{dA^{\perp} d\omega_{\Theta}}$$

- Units: Watt / (m² sr)
- Irradiance per unit solid angle
- 2nd derivative of P
- Most commonly used term

Radiance: Projected Area

$$L(x \to \Theta) = \frac{d^{2}P}{dA^{\perp}d\omega_{\Theta}}$$

$$= \frac{d^{2}P}{d\omega_{\Theta}dA \cos \theta}$$

$$dA^{\perp}$$

$$dA = \frac{dA^{\perp}}{dA} \cos \theta$$

Why per unit projected surface area

Properties of Radiance

Invariant along a straight line (in vacuum)

From kavita's slides

Invariance of Radiance

We can prove it based on the assumption the conservation of energy.

Figure 2.3. Invariance of radiance.

Sensitivity to Radiance

Responses of sensors (camera, human eye) is proportional to radiance

From kavita's slides

 Pixel values in image proportional to radiance received from that direction

Relationships

Radiance is the fundamental quantity

$$L(x \to \Theta) = \frac{d^2 P}{dA^{\perp} d\omega_{\Theta}}$$

• Power:

$$P = \int_{\substack{Area \ Solid \ Angle}} \int L(x \to \Theta) \cdot \cos\theta \cdot d\omega_{\Theta} \cdot dA$$

Radiosity:

$$B = \int_{\substack{Solid\\Angle}} L(x \to \Theta) \cdot \cos \theta \cdot d\omega_{\Theta}$$

Example: Diffuse emitter

Diffuse emitter: light source with equal radiance everywhere

$$L(x \to \Theta) = \frac{d^2P}{dA^{\perp}d\omega_{\Theta}}$$

Example: Diffuse emitter

Diffuse emitter: light source with equal radiance everywhere

$$L(x \to \Theta) = \frac{d^2P}{dA^{\perp}d\omega_{\Theta}}$$

$$P = \int_{\substack{Area \ Solid \ Angle}} L(x \to \Theta) \cdot \cos\theta \cdot d\omega_{\Theta} \cdot dA$$

Example: Diffuse emitter

Diffuse emitter: light source with equal radiance everywhere

$$L(x \to \Theta) = \frac{d^{2}P}{dA^{\perp}d\omega_{\Theta}}$$

$$P = \int_{Area \ Solid} \int_{Angle} L(x \to \Theta) \cdot \cos\theta \cdot d\omega_{\Theta} \cdot dA$$

$$= L \int_{Area \ Solid} \int_{Angle} \cos\theta \cdot d\omega_{\Theta}$$

$$= L \cdot Area \cdot \pi$$

@ Kavita Bala, Computer Science, Cornell University

Sun Example: radiance

- Power: 3.91 x 10²⁶ W
- Surface Area: 6.07 x 10¹⁸ m²

- Power = Radiance.Surface Area.π
- Radiance = Power/(Surface Area.π)

Radiance = 2.05 x 10⁷ W/ m².sr

Sun Example

Same radiance on Earth and Mars?

© Kavita Bala, Computer Science, Cornell University

Sun Example: Power on Earth

Power reaching earth on a 1m² square:

$$P = L \int\limits_{Area} dA \int\limits_{Solid} \cos\theta \cdot d\omega_{\Theta}$$

• Assume $\cos \theta = 1$ (sun in zenith)

$$P = L \int_{Area} dA \int_{Solid} d\omega_{\Theta}$$

Sun Example: Power on Earth

Power = Radiance.Area.Solid Angle

Solid Angle = Projected Area_{Sun}/(distance_{earth_sun})² = 6.7 10⁻⁵ sr

$$P = (2.05 \times 10^7 \text{ W/ m}^2.\text{sr}) \times (1 \text{ m}^2) \times (6.7 \cdot 10^{-5} \text{ sr})$$

= 1373.5 Watt

Sun Example: Power on Mars

Power = Radiance.Area.Solid Angle

$$P = (2.05 \times 10^7 \text{ W/ m}^2.\text{sr}) \times (1 \text{ m}^2) \times (2.92 \times 10^{-5} \text{ sr})$$

= 598.6 Watt

Light and Material Interactions

Physics of light

- Radiometry
- Material properties

Rendering equation

Materials

Bidirectional Reflectance Distribution Function (BRDF)

$$f_r(x, \Psi \to \Theta) = \frac{dL(x \to \Theta)}{dE(x \leftarrow \Psi)} = \frac{dL(x \to \Theta)}{L(x \leftarrow \Psi)\cos(N_x, \Psi)d\omega_{\Psi}}$$

@ Kavita Bala, Computer Science, Cornell University

BRDF special case: ideal diffuse

Pure Lambertian

$$f_r(x, \Psi \to \Theta) = \frac{\rho_d}{\pi}$$

$$\rho_{d} = \frac{Energy_{out}}{Energy_{in}} \qquad 0 \le \rho_{d} \le 1$$

Properties of the BRDF

Reciprocity:

$$f_r(x, \Psi \to \Theta) = f_r(x, \Theta \to \Psi)$$

• Therefore, notation: $f_r(x, \Psi \leftrightarrow \Theta)$

Important for bidirectional tracing

Properties of the BRDF

Bounds:

$$0 \le f_r(x, \Psi \leftrightarrow \Theta) \le \infty$$

Energy conservation:

$$\forall \Psi \int_{\Theta} f_r(x, \Psi \leftrightarrow \Theta) \cos(N_x, \Theta) d\omega_{\Theta} \le 1$$

Homework

Next Time

Rendering equation

