CS780: Scalable Graphics/Geometric Algorithms - Summary

Sung-Eui Yoon (윤성의)

Course URL: http://jupiter.kaist.ac.kr/~sungeui/SGA/

In a Nutshell

- We have studied:
 - Various techniques to design scalable graphics algorithms that can handle massive models

Geometric Data Explosion

- Massive geometric data
 - Due to advances of modeling, simulation, and data capture techniques

- Entertainment (games/movies)
 - Second Life

Computer-aided design (CAD) / virtual prototyping

Ray Tracing Boeing 777, 470 million triangles

- Geographic information system (GIS)
 - Google earth

- Robotics
 - Motion planning

Excerpted fromMotion Planning in Virtual Environments and Games, Mark Overmars

Possible Solutions?

- Hardware improvement will address the data avalanche?
 - Moore's law: the number of transistor is roughly double every 18 months

Current Architecture Trends

Courtesy: Anselmo Lastra, http://www.hcibook.com/e3/ online/moores-law/

Data access time becomes the major computational bottleneck!

Current Architecture Trends: Many-cores

- Employs multi-cores to keep Moore's law
 - 80 core system in Intel
 - Presents numerous research challenges
- Streaming processors (GPUs) with super Moore's law
 - Multi stages in parallel

Data access time is getting relatively bigger!

Data Growth

- An observation
 - If we got better performance, we attempt to produce bigger data to derive more useful information and handle such bigger data
- Amount of data is doubling every 18 ~ 24 months
 - "How Much Information," 2003. Lyman, Peter and Hal R. Varian., www.sims.berkeley.edu/how-much-info-2003

Ubiquitous Computing

- Uses different computational devices
 - Have relative small main memory and L1/L2 caches
 - Pose problems even with small models

Google Earth: browsing 3D world

Our Focus in the Course

- Technologies for scalable graphics applications
 - Multi-resolution methods
 - Cache-coherent algorithms
 - Culling techniques
 - Selective construction methods
 - (Data compression, parallel computations, etc)
- Graphics applications
 - Rasterization and ray tracing for rendering
 - Collision detection

Multi-Resolution or Levels-of-Detail (LODs)

Use simplification given an error bound

Reduce the model complexity!

Culling Techniques

Visibility culling

Reduce the model complexity!

Cache-Coherent Layouts

Data organization to reduce expensive data access time!

Selective Restructuring

Uncovered Topics

- Data compression
 - Data size is still too large
- Parallel computations
 - Many cores are available
- Cache-coherent algorithms
 - We only covered coherent data layouts
- Various other graphics/geometric related applications

Administrations

- Give you feedbacks on your reports by early next week
 - Grade will be given after that

- Course evaluations
 - Let's make this course better for coming students!!!

Thanks!

